

浙江家家智能家居有限公司 年产 6000 套智能定制家居生产线项目

环境影响报告书

(报批稿)

丽水市环科环保咨询有限公司

Lishui Huanke Environmental Consultancy Co., Ltd.

二〇二三年十二月

编制单位和编制人员情况表

项目编号		363kpd						
建设项目名称		浙江家家智能家居有限公司年产6000套智能定制家居生产线项目						
建设项目类别		18—036木质家具制造; 竹、藤家具制造; 金属家具制 制造; 其他家具制造						
环境影响评价文	件类型	报告书						
一、建设单位情	况	2000年11日						
单位名称(盖章))	浙江家家智能家居有限公司						
统一社会信用代码	马	91331122562364527A						
法定代表人(签)	章)	陈丽芬						
主要负责人(签字	字)	麻椒杰 无好人						
直接负责的主管力	(公字)	麻敏杰 るようなからま						
二、编制单位情	况	水湖杏鱼						
単位名称 (盖章)		丽水市环科环保咨询有限公司						
统一社会信用代码	3	91331102329968834W						
三、编制人员情况	Я	WALK WALK	/					
1. 编制主持人		The Miles						
姓名	职业资本	各证书管理号信用编号	签字					
李志	1235334	43511330287 BH033242 -	3g					
2 主要编制人员			17					
姓名 主要		編写內容 信用編号	签字					
刘欢	1, 2, 3, 4	、5、6、8章节 BH000117	刘改					
李志	7, 9, 10	、11、12章节 BH033242	he					

环境保护措施监督检查清单

内容	位置	排放口(编号、	污染物项目	环境保护措施	国家或地方污染	物排放标准
要素	1公 <u>自</u> .	名称)/污染源	万架初坝日	环境保护 有他	标准名称	浓度限值
			颗粒物			有组织: 30mg/m³ 无组织: 1.0mg/m³
			二甲苯		《工业涂装工序大气污	有组织: 40mg/m³ 无组织: 2.0mg/m³
		DA001/油性漆喷涂	乙酸丁酯	经水帘机+干式过滤棉+活性炭吸附+活性炭脱附催化燃烧处理后	染物排放标准》 (DB33/2146-2018)、	有组织: 60mg/m³ 无组织: 0.5mg/m³
			非甲烷总烃	- 通过 15 米高 DA001 排气筒排放	《大气污染物综合排放 标准》(GB16297-1996)	有组织: 80mg/m³ 无组织: 4.0mg/m³
			TVOC			有组织: 150mg/m³ 无组织: 4.0mg/m³
	1#厂房	DA002/水性漆喷涂 1	颗粒物	从少年从四 年第111 平方	《工业涂装工序大气污 染物排放标准》	有组织: 30mg/m³ 无组织: 1.0mg/m³
			非甲烷总烃	- 经水帘机处理后通过 15 米高 DA002 排气筒排放	(DB33/2146-2018)、 《大气污染物综合排放 标准》(GB16297-1996)	有组织: 80mg/m³ 无组织: 4.0mg/m³
大气环境		DA003/水性漆喷涂 2	颗粒物	- 经水帘机处理后通过 15 米高	《工业涂装工序大气污 染物排放标准》 (DB33/2146-2018)、 《大气污染物综合排放 标准》(GB16297-1996)	有组织: 30mg/m³ 无组织: 1.0mg/m³
			非甲烷总烃	DA003 排气筒排放		有组织: 80mg/m³ 无组织: 4.0mg/m³
		DA004/辊涂、淋涂	非甲烷总烃	经水喷淋塔处理后通过 15 米高 DA004 排气筒排放	《工业涂装工序大气污 染物排放标准》 (DB33/2146-2018)	有组织: 80mg/m³ 无组织: 4.0mg/m³
			颗粒物		// T. J. A. A. T. 克. 上左 云	有组织: 30mg/m³ 无组织: 1.0mg/m³
	24厂总	DA005/油州·漆塘冷	二甲苯	全水帘机+干式过滤棉+活性炭吸 附+活性炭脱附催化燃烧处理后	《工业涂装工序大气污 染物排放标准》 (DB33/2146-2018)、	有组织: 40mg/m³ 无组织: 2.0mg/m³
	2#厂房	DA005/油性漆喷涂	乙酸丁酯	通过 15 米高 DA005 排气筒排放	《大气污染物综合排放 标准》(GB16297-1996)	有组织: 60mg/m³ 无组织: 0.5mg/m³
			非甲烷总烃		小小性』(OD10277-1790)	有组织: 80mg/m³ 无组织: 4.0mg/m³

							150 / 2
			TVOC				150mg/m ³ 4.0mg/m ³
							30mg/m ³
			颗粒物		、工业标表工厅人 (75 染物排放标准》		1.0mg/m ³
		DA006/水性漆喷涂 1	非甲烷总烃	- 经水帘机处理后通过 15 米高 DA006 排气筒排放	(DB33/2146-2018)、 《大气污染物综合排放 标准》(GB16297-1996)	有组织:	80mg/m ³ 4.0mg/m ³
			颗粒物	经水帘机处理后通过 15 米高	《工业涂装工序大气污染物排放标准》		30mg/m ³ 1.0mg/m ³
		DA007/水性漆喷涂 2	非甲烷总烃	DA007 排气筒排放	(DB33/2146-2018)、 《大气污染物综合排放 标准》(GB16297-1996)		80mg/m ³ 4.0mg/m ³
		DA008/辊涂、淋涂	非甲烷总烃	经水喷淋塔处理后通过 15 米高 DA008 排气筒排放	《工业涂装工序大气污 染物排放标准》 (DB33/2146-2018)		80mg/m ³ 4.0mg/m ³
	1#厂房	DA009/木工 1	颗粒物	经中央布袋除尘器处理后通过 15 米高 DA009 排气筒排放			120mg/m ³ 1.0mg/m ³
		DA010/木工 2	颗粒物	经中央布袋除尘器处理后通过 15 米高 DA010 排气筒排放	《大气污染物综合排放		120mg/m ³ 1.0mg/m ³
	2#厂房	DA011/木工 1	颗粒物	经中央布袋除尘器处理后通过 15 米高 DA011 排气筒排放	标准》(GB16297-1996)	有组织:	120mg/m ³ 1.0mg/m ³
		DA012/木工 2	颗粒物	经中央布袋除尘器处理后通过 15 米高 DA012 排气筒排放		有组织:	120mg/m ³ 1.0mg/m ³
		DA013/批灰、打磨 1	颗粒物	经水滤式除尘柜处理后通过 15 米 高 DA013 排气筒排放		有组织:	30mg/m ³ 1.0mg/m ³
	1#厂房	DA014/批灰、打磨 2	颗粒物	经布袋除尘器处理后通过 15 米高 DA014 排气筒排放	《工业涂装工序大气污染物排放标准》	有组织:	30mg/m ³ 1.0mg/m ³
	2115	DA015/批灰、打磨 1	颗粒物	经水滤式除尘柜处理后通过 15 米 高 DA015 排气筒排放	(DB33/2146-2018)、 《大气污染物综合排放 ********(CD1(207,1004)	有组织:	30mg/m ³ 1.0mg/m ³
	2#厂房	DA016/批灰、打磨 2	颗粒物	经布袋除尘器处理后通过 15 米高 DA016 排气筒排放	标准》(GB16297-1996)	有组织:	30mg/m ³ 1.0mg/m ³
地	1表水环境	设施处理规模为 50m³/d,	水喷淋塔废水、批灰打 采取"芬顿氧化+混凝疗 磷排放参照《工业企』 水处理厂处理;	充"原则实施设计; ·磨除尘水帘机废水分质分类收集后幼 ·庞+气浮"的处理工艺,经处理达到远 上废水氮、磷污染物间接排放限值》	达到《污水综合排放标准》	理,厂区 _I (GB897	为污水处理 8-1996)中

声环境	厂界四周	噪声	设备减振、距离衰减	《工业企业厂界环境噪声标准》 (GB12348-2008)3类标准;南侧4类标准	3 类: 昼间: ≤65dB(A); 夜间: ≤55dB(A) 4 类: 昼间: ≤70dB(A); 夜间: ≤55dB(A)			
电磁辐射			无					
固体废物	边角料、木局	5粉尘,废砂纸,废包:	《一般工业固体废物贮存和填埋污染控制标准》(GB 185 99-2020)					
	生活垃圾	及分类收集后委托环卫	部门统一清运处置					
	漆渣,废包装桶,收集的	打磨、批灰粉尘,污渍	《危险废物贮存污染控制标准》 (18597—2023)					
土壤及地下水污染防治措施	厂区地面硬化,加强1#厂	一房、2#厂房、污水处	理区建筑物及废水管线的防腐、防渗	,加强固废堆场、危废仓风	库的地面防渗工作。			
生态保护措施		无						
是否涉及大气防护距离			否					
是否涉及卫生防护距离			否					
环境风险防范措施		措施。配备必要的消防	注》(18597—2023)、《危险废物 可应急措施;设置专人负责废气、废办 、三废设施运行管理制度、环境突发	、处理设施管理和运行, 定				
需交易总量指标		项目需交易	· · · · · · · · · · · · · · · · · · ·	0.018t/a。				
排污权及排污许可	六、家具制造业 21"——" 固化剂)的、年使用 20 吋	根据《固定污染源排污许可分类管理名录(2019 年版)》和《2020 年纳入排污许可管理的行业和管理类别表》,本项目属于"十六、家具制造业 21"——"35、木质家具制造 211"中的"除重点管理以外的年使用 10 吨及以上溶剂型涂料或者胶粘剂(含稀释剂、固化剂)的、年使用 20 吨及以上水性涂料或者胶粘剂的、有磷化表面处理工艺的",项目实行排污许可简化管理。新建排污单位应当在启动生产设施或者发生实际排污之前进行依法领取排污许可证。						
验收要求	 生产性工程及辅助公共设施已按设计要求建成,满足生产要求; 主要工艺设备已配套安装,经负荷联动试车合格,构成生产线,形成生产能力,能生产出符合规定的产品; 必要的生产设施,已按设计要求建成; 生产准备工作能适应投产的需要; 环境保护设施、劳动安全卫生设施、消防设施已按设计要求与主体工程同时建成使用; 生产性投资项目如工业项目的土建工程、安装工程、人防工程、管道工程、通讯工程等工程的施工和竣工验收必须按照国家和 							

行业施工及验收规范执行:
7. 完成总量指标的交易,取得污染物排放权证;
8. 按要求取得排污许可证。

环评报告自查表

类别										
专项评价设置情况										
"三线一单"	'生态环境分区管控方案 符合性结论	本项目位于浙江省丽水市缙云县产业集聚重点管控区(ZH33112220051),项目属于迁建项目,符合《缙云县"三线一单"生态环境分区管控 方案》的相关要求。								
	评价范围		以企业为中心区域,取边长为 5km 的矩形区域							
	保护目标		最	近保护目标为笕川村	(距厂界最近距	拒离 414 米)				
大气环境	评价因子		颗粒物、	苯系物、乙酸酯类、	非甲烷总烃、	TVOC、臭气浓度				
影响评价	环境质量现状评价结 论	根据《2022 年缙云	县环境质量公报)》,缙云县 根据评价范围内现状监测资			境空气质量标准》(GB3095-2012 烷总烃监测数据可达到相应标准》)二级标准,为达标区。 艮值			
	环境影响评价结论		目位于环境空气达标区,与环境空气保护目标有一定距离,废气收集处理后均能达标排放,因此,项目采取的污染治理措施切实可行,对目周边大气环境及敏感点影响较小,大气环境质量可维持现有水平。							
		废水类别	污染物种类	污染治理设施	排放口	排放标准	排放去向			
	项目废水产排情况	生产废水	PH、COD、NH ₃ -N、SS 等	污水站	总排口	COD≤500、氨氮≤35	缙云县第三污水处理 厂			
地表水环		生活污水	COD、NH ₃ -N	化粪池	总排口	COD≤500、氨氮≤35	缙云县第三污水处理 厂			
境影响评 价	环境质量现状评价结 论	根据《2022 年缙云	根据《2022 年缙云县环境质量公报》,项目附近河道 2021-2022 年建镇水源地、宅基断面水质均达到《地表水环境质量标准》(GB3838-2002) 中的相应标准							
	环境影响评价结论		废水经预处理后出水可达到《污水综合排放标准》(GB8978-1996)中三级标准后纳工业区污水管网,进入缙云县缙云县第三污水处理 厂统一处理,对环境影响不大。							
	评价范围			企业厂界向	 外 200m 范围					
去 开校即	保护目标			企业厂界 200 范围	内无声环境保					
声环境影响评价	现状评价结论	项目	目厂界各测点昼间、夜间噪声	监测值均低于《声环	竟质量标准》	(GB3096-2008) 中 3 类、4a 类标	准限值。			
	影响评价结论	根据预测结果表明				厂界四周的昼间噪声贡献值均能流 3、南侧达4类标准值。	满足《工业企业厂界环境			
环境风险	主要危险物质及分布		溶剂型涂料(苯系物、	乙酸酯类等)、水性	涂料、危险废	物等,分布于原料仓库和危废间				
影响评价	风险评价等级			综合评价等	级为简单分析					

目 录

1	概述		1
	1.1	项目由来	1
	1.2	环境影响评价工作过程	2
		分析判断相关情况	
	1.4	项目特点及关注的主要问题	5
	1.5	环境影响报告书的主要结论	6
2	总则		7
	2.1	编制依据	7
	2.2	评价因子与评价标准	11
	2.3	评价工作等级与评价范围	. 19
	2.4	相关规划及环境功能区划	23
	2.5	主要环境保护目标	. 28
3	原有	项目工程分析	. 32
	3.1	原有项目工程分析	. 32
	3.2	现有环保审批情况	. 32
		原有项目现状调查	
	3.4	"三废"治理措施与环保管理的存在问题与整改措施	.40
4		页目工程分析	
		基本概况	
	4.2	本项目影响因素分析	. 59
	4.3	本项目污染源源强核算	66
		总量控制	
5		见状调查与评价	
		自然环境概况	
		基础设施概况	
		环境质量现状调查与评价	
		周边污染源调查	
6		影响预测与评价	
		施工期环境影响预测与评价	
		营运期环境影响分析	
7		风险分析	
		风险评价目的和重点	
		项目环境风险调查	
		环境风险潜势初判	
		风险分析	
		事故应急池	
		建立环境风险"三级防控"体系	
		环境风险事故应急预案	
		环境风险评价结论	
8		保护措施及其可行性论证	
	8.1	施工期污染防治措施	199

8.2 营运期污染防治措施其可行性论证	201
8.3 环保投资	224
9环境影响经济损益分析	226
9.1 经济效益分析	226
9.2 社会效益分析	226
9.3 环境损益分析	226
9.4 小结	226
10 环境管理与环境监测	227
10.1 环境管理	227
10.2 环境监测	231
10.3 排污许可管理	233
10.4 建立环境监测档案	234
11 环境影响评价结论	237
11.1 建设项目环保审批要求符合性分析	237
11.2 建设项目概况	250
11.3 环境质量现状评价结论	250
11.4 项目"三废"产排情况汇总	251
11.5 污染防治对策与措施总汇	252
11.6 环境影响评价主要结论	254
11.7 主要建议	256
11.8 环评总结论	256
12 附图、附件	258
12.1 附图	258
12.2 附件	258
12.3 附表	258

1 概述

1.1 项目由来

浙江家家智能家居有限公司成立于 2010 年 9 月 14 日,主要从事智能家居的生产和销售。租用缙云县爱立特工贸有限公司位于缙云县新建镇洋山工业区 1号的闲置厂房生产,主要从事木质饰面板和木门等产品的生产和销售。目前企业生产规模为年产木饰面 10 万 m²、木门 2 万樘。

为了扩大市场占有率、提高企业竞争力,企业决定扩大生产规模。由于现有租赁厂房受限,企业于 2022 年 3 月通过国有建设用地使用权出让竞得缙云县新建 01-M2-01-2 地块(缙云县新建镇笕川村)的工业用地使用权,于竞得工业地块新建 1#厂房、2#厂房和综合楼,地块总用地面积 23114.7m²,总建筑面积50147.46m²,拟于该新建厂房内实施迁建项目,项目建成后,将形成年产 6000套智能定制家居的生产能力。迁建后,现有厂区将停产。

缙云县经济商务局已同意该项目的登记备案,根据项目备案(赋码)信息表(项目代码: 2203-331122-07-02-296379),建设单位向环保部门办理环保相关许可手续。

根据《中华人民共和国环境影响评价法》、国务院第 253 号令《建设项目环境保护管理条例》、《浙江省建设项目环境保护管理办法》中的有关规定,该建设项目应进行环境影响评价,从环保角度论证项目建设的可行性,因此,浙江家家智能家居有限公司委托丽水市环科环保咨询有限公司进行该项目的环境影响评价工作。

根据《建设项目环境影响评价分类管理名录》(2021 年版),本项目属于"十八、家具制品业 21——36、木质家具制造 211"中的"有电镀工艺的;年用溶剂型涂料(含稀释剂)10 吨及以上的",故确定项目环境影响报告类型为报告书。

我单位接受委托后,认真研究该项目的有关材料,并进行了实地踏勘和调研, 收集和核实有关材料及工程资料,在现场调查、环境现状监测、预测分析等环节 工作的基础上,编制完成了本项目的环境影响报告书。

1.2 环境影响评价工作过程

环评工作一般分为三个阶段,即前期准备、调研和工作方案制定阶段,分析 论证和预测评价阶段,环境影响报告书编制阶段,具体工作流程图如下:

第一阶段:即前期准备、调研和工作方案阶段。我环评单位在接受项目委托后,及时组织公司专业技术人员成立环评项目组,安排人员进行现场踏勘,初步调查拟建项目所在地的区域环境现状,初步分析建设项目工程内容,收集有关本工程的设计资料,制定了项目环评的工作方案。

第二阶段:即分析论证和预测评价阶段。对建设项目拟建地环境现状进行调查,调查方式主要是采用历史监测资料、常规监测资料及实测资料等进行分析,调查主要包括大气、地表水、地下水、声环境等内容;在初步工程分析的基础上,根据建设项目的设计资料等进行详细的工程分析,得出污染源强。根据现状调查及工程分析内容,最终进行环境影响评价与分析、环保措施技术经济论证等工作。

第三阶段:即环境影响评价文件编制阶段。在第一阶段、第二阶段的基础上,项目组遵循《环境影响评价技术导则》及其他环保法律法规等规定的原则、方法、内容及要求,进行本次迁建项目的环境影响报告书的编制。

项目的公众参与工作由建设单位进行并贯穿于整个项目过程。具体工作流程图如下:

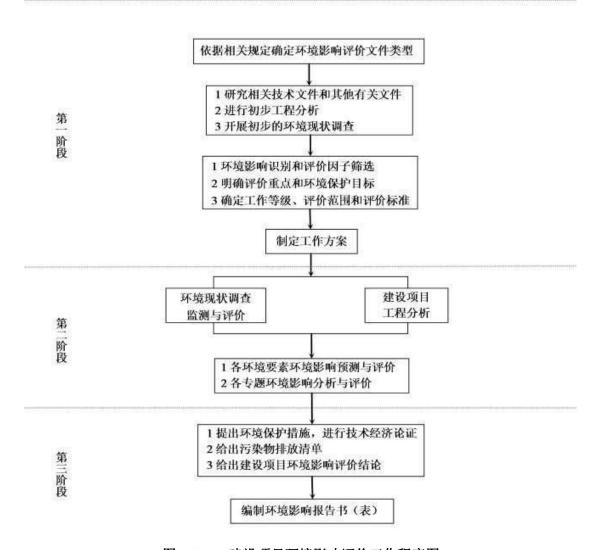


图 1.2.1 建设项目环境影响评价工作程序图

1.3 分析判断相关情况

- 1、根据《建设项目环境影响评价分类管理名录》(2021 年版),本项目属于"十八、家具制品业21——36、木质家具制造211"中的"有电镀工艺的;年用溶剂型涂料(含稀释剂)10吨及以上的",故确定项目环境影响报告类型为报告书。
- 2、根据《产业结构调整指导目录(2019年本)》,本项目不属于鼓励类、限制类或淘汰类,本项目目前已在缙云县经济商务局登记备案(项目代码: 2203-331122-07-02-296379)。

本项目为C2110木质家具制造,对照《丽水市(制造业)产业结构调整优化和发展导向目录(2021年版)》,不属于《导向目录》中的鼓励类、限制类和淘汰类、禁止类项目,"不属于以上四类且符合国家相关法律法规和政策规定的,

为允许类。"本项目符合国家相关法律法规和政策规定,因此,本项目为允许类项目。

因此,项目符合国家和地方相关产业政策要求。

- 3、对照《缙云县"三线一单"生态环境分区管控方案》,项目所在地属于 "ZH33112220051 浙江省丽水市缙云县产业集聚重点管控区",符合相关管控 要求。
- 4、根据缙云县"三区三线"划定成果,本项目位于缙云县新建 01-M2-01-2 地块(缙云县新建镇笕川村),不属于生态保护红线、永久基本农田控制线范围内,符合"三区三线"控制要求。
- 5、根据中华人民共和国国务院第 682 号《建设项目环境保护管理条例》"四性五不批"要求,项目符合性分析见表 1.3-1。

	建设项目环境保护管理条例	符合性分析	是否符 合
	建设项目环境可行性	项目位于缙云县新建 01-M2-01-2 地块 (缙云县新建镇笕川村),周边均为工 业企业,区域环境空气、水环境、声环 境质量现状均较好,有一定的环境容量, 能满足建设项目对环境的需求。	符合
 	环境影响分析预测评估的可靠 性	本项目预测方法、预测组合均按照环境 影响评价技术导则进行预测评价,环境 影响分析预测评估是可靠的。	符合
性 性 -	环境保护措施的有效性	本项目产生的污染物均有较为成熟的技术进行处理,从技术上分析,只要切实落实本报告提出的污染防治措施,本项目废气、废水、噪声可做到达标排放,固废实现零排放。	符合
	环境影响评价结论的科学性	本环评结论客观、过程公开、评价公正, 并综合考虑建设项目实施后对各种环境 因素可能造成的影响,环评结论是科学 性的。	符合
五	(一)建设项目类型及其选址、 布局、规模等不符合环境保护法 律法规和相关法定规划。	项目符合当地总体规划,符合国家、地 方产业政策,符合环境保护法律法规和 相关法定规划。	符合
北	(二)所在区域环境质量未达到 国家或者地方环境质量标准,且 建设项目拟采取的措施不能满 足区域环境质量改善目标管理	项目所在区域环境质量均能达到国家或 者地方环境质量标准。	符合

表 1.3-1 与"四性五不批"符合性分析表

要求。		
(三)建设项目采取的污染防治 措施无法确保污染物排放达到 国家和地方排放标准,或者未采 取必要措施预防和控制生态破 坏。	根据工程分析,项目营运过程中各类污染源均可得到有效控制并能做到达标排放,企业在落实相应的污染防治措施后,不会对破坏生态环境。	符合
(四)改建、扩建和技术改造项目,未针对项目原有环境污染和生态破坏提出有效防治措施。	本项目为迁建项目,本项目实施后相关 污染防治措施全部按照本环评要求执 行。	符合
(五)建设项目的环境影响报告 书、环境影响报告表的基础资料 数据明显不实,内容存在重大缺 陷、遗漏,或者环境影响评价结 论不明确、不合理。	环评报告采用的基础资料均采用项目方 实际建设申报内容,环境监测数据均由 资质单位监测取得。通过完善的内部审 核程序,报告不存在重大缺陷和遗漏。	符合

1.4 项目特点及关注的主要问题

1.4.1 项目特点

- 1、本项目选址位于缙云县新建 01-M2-01-2 地块(缙云县新建镇笕川村), 拟新建 1#厂房、2#厂房和综合楼,地块总用地面积 23114.7m²,总建筑面积 50147.46m²,本次拟于该新建厂房内实施迁(扩)建项目。
- 2、本项目属于迁(扩)建项目,迁(扩)建后企业总产能增加;采用3种上漆工艺,喷枪空气喷涂、辊涂和淋涂;环境友好型涂料约占涂料总使用量的80%,可有效从源头减少 VOCs 的产生量。
- 3、本项目主要生产智能家居。智能家居是以住宅为平台,利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成,构建高效的住宅设施与家庭日程事务的管理系统,提升家居安全性、便利性、舒适性、艺术性,并实现环保节能的居住环境。

1.4.2 关注的主要问题

本环评关注的主要问题具体如下:

- 1、项目建设前拟建地环境质量现状概况,主要包括大气环境、地表水环境、 声环境、地下水、土壤环境等;
 - 2、项目营运期产生的"三废"对周边环境的影响情况;
 - 3、环境影响减缓措施及其可行性分析。
 - 4、项目选址合理性及环保可行性。

5、建设项目存在的潜在风险、有害因素和可能发生的突发性事件或事故。

1.5 环境影响报告书的主要结论

浙江家家智能家居有限公司年产 6000 套智能定制家居生产线项目选址位于缙云县新建 01-M2-01-2 地块(缙云县新建镇笕川村),项目选址符合《缙云县"三线一单"生态环境分区管控方案》等相关规划要求,项目的实施符合相关法律法规以及国家和地方产业政策的要求,只要建设单位认真落实本报告提出的各项合理可行的污染防治措施,切实做到"三同时",加强环境管理,做好环境污染防治工作,本项目营运过程中各污染物均能达标排放,项目建设可满足当地环境质量要求及总量控制要求;根据建设单位编制的公众参与说明,项目公众参与未收到相关意见及建议;因此,从环境保护角度看,该项目是可行的。

2 总则

2.1 编制依据

2.1.1 国家法律法规及有关环境保护文件

- 1、《中华人民共和国环境保护法》(2015年1月1日起施行);
- 2、《中华人民共和国环境影响评价法》(2019年1月1日起施行);
- 3、《中华人民共和国大气污染防治法》(2018年10月26日起施行);
- 4、《中华人民共和国固体废物污染环境防治法》(2020年9月1日起施行);
- 5、《中华人民共和国水污染防治法》(2018年1月1日起施行);
- 6、《中华人民共和国噪声污染防治法》(2021 年 12 月 24 日通过, 2022 年 6 月 5 日起施行);
 - 7、《中华人民共和国土壤污染防治法》(2019年1月1日起施行);
 - 8、《中华人民共和国水法》(2016年9月1日起施行);
- 9、《中华人民共和国清洁生产促进法》(2003年1月1日起施行,2012年修正);
 - 10、《建设项目环境保护管理条例》(2017年修订);
- 11、《建设项目环境影响评价分类管理名录(2021 年版)》(2021 年 1 月 1 日起施行);
- 12、《工业和信息化部关于进一步加强工业节水工作的意见》(工信部节 [2010]218 号);
- 13、《关于做好环境影响评价制度与排污许可制衔接相关工作的通知》(环办环评[2017]84号);
- 14、《关于进一步加强环境影响评价管理防范环境风险的通知》(环发 [2012]77号);
 - 15、《国务院关于印发节能减排综合性工作方案的通知》(国发[2007]15号);
- 16、《关于印发<建设项目环境影响评价政府信息公开指南(试行)>的通知》(环办[2013]103号):
- 17、《关于切实加强环境影响评价监督管理工作的通知》(环办[2013]104 号):

- 18、《关于切实加强风险防范严格环境影响评价管理的通知》(环发[2012]98号);
- 19、《关于印发〈企业事业单位突发环境事件应急预案备案管理办法(试行)〉的通知》(环发[2015]4号);
- 20、《环保部关于印发<建设项目主要污染物排放总量指标审核及管理暂行办法>的通知》(环发[2014]197号);
- 21、《关于加强规划环境影响评价与建设项目环境影响评价联动工作的意见》 (环发[2015]178号);
 - 21《中华人民共和国节约能源法》(2018年修正);
- 22、《关于落实<水污染防治行动计划>实施区域差别化环境准入的指导意见》(环环评[2016]190号);
- 23、《中共中央、国务院关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》(2018 年 6 月 16 日):
 - 24、《市场准入负面清单(2022年版)》(发改体改规[2022]397号);
 - 25、《环境影响评价公众参与办法》(2019年1月1日实施);
- 26、《国务院关于加快建立健全绿色低碳循环发展经济体系的指导意见》(国 发〔2021〕4号);
- 27、《国家危险废物名录(2021 年版)》(生态环境部令第 15 号, 2021 年 1 月 1 日起施行);
 - 28、《排污许可管理条例》(国务院令第736)号;
- 29、《关于印发<环境保护综合名录(2021 年版)>的通知》(环办综合函 [2021]495 号);
- 30、《关于印发<长三角地区 2020-2021 年秋冬季大气污染综合治理攻坚行动方案>的通知》(生态环境部等,2020 年 10 月 30 日):
- 31、《限制用地项目目录(2012 年本)》、《禁止用地项目目录(2012 年本)》(国土资发[2012]98 号);
- 32、关于印发《重点行业挥发性有机物综合治理方案》的通知,生态环境部, 2019年6月26日实施;
 - 33、关于印发《2020年挥发性有机物治理攻坚方案》的通知,生态环境部,

2020年6月23日实施:

- 34、关于加快解决当前挥发性有机物治理突出问题的通知,生态环境部,2021 年8月4日实施;
 - 35、《关于进一步优化环境影响评价工作的意见》(环环评(2023)52号)。

2.1.2 地方法规

- 1、《浙江省大气污染防治条例》(浙江省第十三届人民代表大会常务委员会第二十五次会议,2020年11月27日施行);
- 2、《浙江省固体废物污染环境防治条例(2022)》(浙江省第十三届人民 代表大会常务委员会第三十八次会议修订通过,2023年1月1日起施行);
- 3、《浙江省水污染防治条例》(浙江省第十三届人民代表大会常务委员会 第二十五次会议,2020年11月27日施行);
- 4、《浙江省建设项目环境保护管理办法(2021 年修正)》(浙江省人民政府令第 388 号,2021 年 2 月 10 日起施行);
- 5、《浙江省环境保护厅关于印发建设项目环境影响评价信息公开相关法律 法规解读的函》(浙环发[2018]10号,2018年3月22日起施行);
- 6、《浙江省生态环境主管部门负责审批环境影响评价文件的建设项目清单 (2023年本)》(浙环发[2023]33号,2023年9月9日起实施);
- 7、《浙江省水污染防治行动计划》(浙政发[2016]12 号,2016 年 4 月 6 日 起施行):
- 8、《关于印发〈浙江省挥发性有机物污染整治方案〉的通知》(浙环发〔2013〕 54号,2013年11月4日);
- 9、《关于印发浙江省"十四五"挥发性有机物综合治理方案的通知》(浙环发〔2021〕10号,2021年8月17日起施行);
- 10、《浙江省土壤、地下水和农业农村污染防治"十四五"规划》(浙发改规划[2021]250号,2021年6月17日起施行);
- 11、《浙江省排污许可证管理实施方案》(浙政办发[2017]79 号,2017 年 7 月 28 日起施行):
- 13、《浙江省生态环境保护条例》(浙江省第十三届人民代表大会常务委员会公告第71号,2022年8月1日起施行):

- 16、《浙江省工业节能降碳技术改造行动计划(2022-2024年)》;
- 17、《浙江省噪声污染防治行动计划(2023-2025年)》。

2.1.3 产业政策

- 1、《产业结构调整指导目录(2019年本)》,2021年12月30日起施行;
- 2、《关于发布实施<限制用地项目目录(2012年本)>和<禁止用地项目目录(2012年本)>的通知》;
- 3、《长江经济带发展负面清单指南(试行,2022年版)》(2022年1月19日);
- 4、《丽水市人民政府办公室关于实施丽水市生态工业发展负面清单制度的通知》(丽政办发[2014]76号);
- 5、《丽水市生态工业发展"31576"五年行动计划工作方案》(丽政办发〔2017〕74号)。

2.1.4 技术规范

- 1、《建设项目环境影响评价技术导则一总纲》(HJ2.1-2016);
- 2、《环境影响评价技术导则一大气环境》(HJ2.2-2018);
- 3、《环境影响评价技术导则——地表水环境》(HJ2.3-2018);
- 4、《环境影响评价技术导则一声环境》(HJ2.4-2021);
- 5、《环境影响评价技术导则一生态影响》(HJ19-2022);
- 6、《环境影响评价技术导则一地下水环境》(HJ610-2016);
- 7、《建设项目环境风险评价技术导则》(HJ169-2018);
- 8、《固体废物处理处置工程技术导则》(HJ2035-2013);
- 9、《环境噪声与振动控制工程技术导则》(HJ2034-2013);
- 10、《环境影响评价技术导则——土壤环境(试行)》(HJ964-2018);
- 11、《浙江省建设项目环境影响评价技术要点(修改版)》,省环保局2005.4;
- 12、《声环境功能区划分技术规范》(GB/T15190-2014):
- 13、《环境空气质量评价技术规范(试行)》(HJ663-2013);
- 14、《制定地方大气污染物排放标准的技术方法》(GB/T3840-91);
- 15、《建设项目危险废物环境影响评价指南》(环境保护部公告 2017 年第 43 号, 2017 年 10 月 1 日起施行);

- 16、《排污许可证申请与核发技术规范 家具制造》(HJ 1027-2019);
- 17、《排污单位自行监测技术指南 涂装》(HJ 1086—2020);
- 18、《固定污染源排污许可分类管理名录(2019年版)》:
- 19、《排风罩的分类和技术条件》(GB/T16758);
- 20、《局部排风设施控制风速检测与评估技术规范》(AQ/T 4274);
- 21、《浙江省工业涂装工序挥发性有机物污染防治可行技术指南》;
- 22、《排污许可证申请和核发技术规范 铁路、船舶、航空航天和其他运输设备制造业》(HJ1124-2020)。

2.1.5 项目技术文件及其他

- 1、《缙云县"三线一单"生态环境分区管控方案》;
- 2、浙政函【2015】71号《浙江省人民政府关于浙江省水功能区水环境功能 区划分方案(2015)的批复》及《浙江省水功能区水环境功能区划分方案(2015)》;
 - 3、《缙云县环境空气质量功能区划》(缙政办发〔2022〕20 号);
 - 4、《缙云县声环境功能区划分方案》(缙云县人民政府,2018.12);
- 5、建设单位提供的与项目有关的其他资料(营业执照、项目备案(赋码)信息等)。

2.2 评价因子与评价标准

2.2.1 评价因子

2.2.1.1 评价因子识别

根据项目生产工艺流程中各环节的产污因素,可确定该企业可能造成环境影响的因素有:废水、废气、噪声和固体废弃物。各类污染因素及污染因子见表 2.2-1。

类别	污染因子	原料 运输	原料 贮存	生产 过程	职工 生活	产品 贮存	产品运输	废气 治理	废水 处理
	$\mathrm{COD}_{\mathrm{Cr}}$			•	•			•	•
废水	NH ₃ -N			•	•			•	•
	SS			•				•	•
废气	颗粒物		0•	0•				0•	
	苯系物		0•	0•				0•	
	乙酸酯类		0•	0•				0•	·

表 2.2-1 生产污染工序及污染因子汇总

类别	污染因子	原料 运输	原料 贮存	生产 过程	职工 生活	产品 贮存	产品运输	废气 治理	废水 处理
	非甲烷总烃		0•	0•				0•	
	TVOC		0•	0 •				0•	
	臭气浓度		0•	0 •				0•	
	油烟				•			•	
噪声	噪声	•		•			•	•	•
	边角料、木质粉尘			•					
	漆渣			•					
	废包装桶			•					
	废砂纸			•					
	收集的打磨、批灰粉尘			•				•	
固废	废包装材料			•					
四次	污泥			•					0•
	废活性炭							•	
	废吸附棉							•	
	废催化剂							•	
	废布袋			•				•	
	生活垃圾				•				
	注: •表示正常情况下的	亏染因于	子; ○表:	示事故风	风险时可	「能出现	的污染	因子。	

2.2.1.2 评价因子筛选

依据建设项目特点及周边区域环境特征的分析,确定各环境影响要素的评价 因子如表 2.2-2 所示。

类别 现状评价因子 影响评价因子 地表水 pH、COD_{Mn}、BOD₅、NH₃-N、TP、石油类、总氮 COD、NH₃-N、SS pH、COD_{Mn}、氨氮、硝酸盐、亚硝酸盐、总溶解 性固体、硫酸盐、氯化物、氟化物、铬(六价)、 地下水 COD 铁、锰、汞、砷、镍、铅、总硬度、K+、Na+、Ca2+、 Mg²⁺、CO₃²⁻、HCO³⁻ 颗粒物、苯系物、乙酸酯 SO₂、NO₂、PM₁₀、PM_{2.5}、O₃、CO、TSP、二甲苯、 气 类、非甲烷总烃、TVOC、 非甲烷总烃 臭气浓度 L_{eq} (A) 声 $L_{eq}(A)$ HM(重金属7项)、VOC(挥发性有机物27项)、 土壤 二甲苯 SVOC(半挥发性有机物 11 项)+pH 值、石油烃 固废 一般固废、危险废物

表 2.2-2 项目评价因子

2.2.2 评价标准

2.2.2.1 环境质量标准

1、地表水环境

根据《浙江省水功能区水环境功能区划分方案(2015 年版)》,本项目附近地表水体为钱塘江(钱塘 126),属于 III 类水体。地表水环境质量执行《地表水环境质量标准》(GB3838-2002)III 类标准,相关标准值见表 2.2-3。

表 2.2-3 地表水环境质量标准(单位: mg/L,除 pH 外)

参数	рН	COD _{Mn}	BOD ₅	DO	NH ₃ -N	TN	TP	石油类
Ⅲ类标准	6~9	≤6	≤4	≥5	≤1.0	≤1.0	≤0.2	≤0.05

2、地下水环境

由于项目所在区域未规划地下水环境功能区,根据所在地理位置以及周边区域用水概况,本次评价地块地下水环境质量标准参照《地下水质量标准》 (GB/T14848-2017)中的 III 类标准,详见表 2.2-4。

表 2.2-4 《地下水质量标准》(GB/T14848-2017) 单位: 单位: mg/L, pH 无量纲

序号	污染物项目	标准值
	感官性状及一般化学指标	
1	色(铂钴色度单位)	15
2	嗅和味	无
3	浑浊度/MTU	3
4	肉眼可见物	无
5	рН	6.5~8.5
6	总硬度(以 CaCO ₃ 计)(mg/L)	450
7	溶解性总固体(mg/L)	1000
8	硫酸盐 (mg/L)	250
9	氯化物(mg/L)	250
10	铁 (mg/L)	0.3
11	锰(mg/L)	0.10
12	铜(mg/L)	1.00
13	锌 (mg/L)	1.00
14	铝 (mg/L)	0.20
15	挥发性酚类(以苯酚计)(mg/L)	0.002
16	阴离子表面活性剂(mg/L)	0.3
17	耗氧量(COD _{Mn} 法,以O ₂ 计)(mg/L)	3.0
18	氨氮(以N计)(mg/L)	0.50
19	硫化物(mg/L)	0.02
20	钠(mg/L)	200
	微生物指标	
21	总大肠菌群(MPN/100mL)	3.0

22	细菌总数(CFU/mL)	100
	毒理学指标	
23	亚硝酸盐 (mg/L)	1.00
24	硝酸盐(以N计)(mg/L)	20.0
25	氰化物 (mg/L)	0.05
26	氟化物(mg/L)	1.0
27	碘化物 (mg/L)	0.08
28	汞 (mg/L)	0.001
29	砷 (mg/L)	0.01
30	硒(mg/L)	0.01
31	镉 (mg/L)	0.005
32	铬(六价)(mg/L)	0.05
33	铅 (mg/L)	0.01
34	三氯甲烷(μg/L)	60
35	四氯化碳(μg/L)	2.0
36	苯 (µg/L)	10.0
37	甲苯 (μg/L)	700

3、环境空气

根据环境空气质量功能区划,项目所在区域属二类功能区,环境空气常规污染物浓度限值执行《环境空气质量标准》(GB3095-2012)及 2018 年修改单中的二级标准,非甲烷总烃参考《大气污染物综合排放标准详解》中的要求;二甲苯采用 HJ2.2-2018 附录 D表 D.1 小时浓度均值;乙酸丁酯参照前苏联 CH245-71《居民区大气中有害物质的最大允许浓度》。见表 2.2-5。

表 2.2-5 环境空气质量标准

类别	污染物名称		浓度标准限值 二级	单位	标准来源
		年平均	60	$\mu g/m^3$	
	二氧化硫(SO ₂)	24 小时平均	150	$\mu g/m^3$	
		1 小时平均	500	$\mu g/m^3$	
# +		年平均	40	$\mu g/m^3$	//
基本项目	二氧化氮(NO ₂)	24 小时平均	80	$\mu g/m^3$	《环境空气质量标准》 (GB3095-2012)
-X H		1 小时平均	200	$\mu g/m^3$	(GD3073-20127
	一氧化碳(CO)	24 小时平均	4	mg/m ³	
	手(化狄(СО)	1 小时平均	10	mg/m ³	
	臭氧(O ₃)	日最大8小时平均	160	$\mu g/m^3$	

		1 小时平均	200	μg/m³	
	颗粒物(粒径小于	年平均	70	μg/m³	
	等于 10µg)	24 小时平均	150	μg/m³	
	颗粒物(粒径小	年平均	35	μg/m³	
	于等于 2.5μg)	24 小时平均	75	μg/m³	
	总悬浮颗粒物	年平均	200	μg/m³	
	(TSP)	24 小时平均	300	μg/m³	
		年平均	50	μg/m ³	
	氮氧化物(NO _x)	24 小时平均	100	μg/m³	
廿仙		1 小时平均	250	μg/m³	
其他 项目	非甲烷总烃	一次值	2000	μg/m³	参考《大气污染物综合排放 标准详解》
	二甲苯	1 小时平均	200	μg/m³	 HJ2.2-2018 附录 D 表 D.1
	TVOC	8h 平均	600	μg/m ³	HJ2.2-2016 四米 D
	乙酸丁酯	最大一次/昼夜平均	100	μg/m³	前苏联 CH245-71《居民区大 气中有害物质的最大允许浓 度》

4、声环境

对照《缙云县声环境功能区划分方案》(缙云县人民政府,2018.12),本项目未纳入该声环境功能区划范围内。根据《声环境质量标准》(GB3096-2008)、《声环境功能区划分技术规范》(GB/T 15190-2014)中相关规定结合现有项目声环境标准执行情况,项目所在地声环境执行《声环境质量标准》(GB3096-2008)中3类标准,南侧临岩西公路执行4a类标准,具体指标见表2.2-6。

表 2.2-6 声环境质量标准(单位: dB(A))

Ī	类别	昼间	夜间
ĺ	3 类	65	55
ĺ	4a 类	70	55

5、土壤环境质量标准

本项目地块为工业用地,属于建设用地中的第二类用地,项目区域土壤环境质量标准执行《土壤环境质量建设用地土壤污染风险管控标准》(GB36600—2018)第二类用地筛选值及管制值,见表 2.2-7。

表 2.2-7 《土壤环境质量建设用地土壤污染风险管控标准》(GB36600—2018)

序号	污染物项目	CAS 编号	第二类用地		
万分	行笨物项目	LAS 編 与	筛选值	管制值	
	重金属				

1	 砷	7440-38-2	60	140
2	 镉	7440-43-9	65	172
3	 铬 (六价)	18540-29-9	5.7	78
4	 铜	7440-50-8	18000	36000
5	 铅	7439-92-1	800	2500
6	 汞	7439-97-6	38	82
7		7440-02-0	900	2000
	<u></u>		700	2000
8	四氯化碳	56-23-5	2.8	36
9		67-66-3	0.9	10
10		74-87-3	37	120
11		75-34-3	9	100
12	1,1-二氯乙烷	+	5	21
	1,2-二氯乙烷	107-06-2		
13	1,1-二氯乙烯	75-35-4	66	200
14	顺-1,2-二氯乙烯	156-59-2	596	2000
15	反-1,2-二氯乙烯	156-60-5	54	163
16	二氯甲烷	75-09-2	616	2000
17	1,2-二氯丙烷	78-87-5	5	47
18	1,1,1,2-四氯乙烷	630-20-6	10	100
19	1,1,2,2-四氯乙烷	79-34-5	6.8	50
20	四氯乙烯	127-18-4	53	183
21	1,1,1-三氯乙烷	71-55-6	840	840
22	1,1,2-三氯乙烷	79-00-5	2.8	15
23	三氯乙烯	79-01-6	2.8	20
24	1,2,3-三氯丙烷	96-18-4	0.5	5
25	氯乙烯	75-01-4	0.43	4.3
26	苯	71-43-2	4	40
27	氯苯	108-90-7	270	1000
28	1,2-二氯苯	95-50-1	560	560
29	1,4-二氯苯	106-46-7	20	200
30	乙苯	100-41-4	28	280
31	苯乙烯	100-42-5	1290	1290
32	甲苯	108-88-3	1200	1200
22	何一田 学 1241一田学	108-38-3,	570	570
33	间二甲苯+对二甲苯	106-42-3	570	570
34	邻二甲苯	95-47-6	640	640
	半挥	发性有机物		
35	硝基苯	98-95-3	76	760
36	苯胺	62-53-3	260	663

37	2-氯酚	95-57-8	2256	4500
38	苯并[a]蒽	56-55-3	15	151
39	苯并[a]芘	50-32-8	1.5	15
40	苯并[b]荧蒽	205-99-2	15	151
41	苯并[k]荧蒽	207-08-9	151	1500
42	薜	218-01-9	1293	12900
43	二苯并[a, h]蒽	53-70-3	1.5	15
44	茚并[1,2,3-cd]芘	193-39-5	15	151
45	萘	91-20-3	70	700
	石	油烃类		
46	石油烃 (C ₁₀ -C ₄₀)	-	4500	9000

2.2.2.2 污染物排放标准

1、废水

本项目废水包括喷漆水帘机废水、水喷淋塔废水、批灰打磨除尘水帘机废水、职工生活污水。

本项目生活废水经化粪池/隔油池处理达标后纳入市政污水管网;喷漆水帘 机废水、水喷淋塔废水、批灰打磨除尘水帘机废水经厂区污水处理设施处理达标后纳入市政污水管网;本项目废水纳管标准执行《污水综合排放标准》(GB8978-1996)中三级标准(其中氨氮、总磷排放参照《工业企业废水氮、磷污染物间接排放限值》(DB33/887-2013)中标准限值,总氮参照《污水排入城镇下水道水质标准》(GB/T31962-2015)中 B 级标准)。缙云县第三污水处理厂出水水质 CODcr、TN 指标执行浙江省《城镇污水处理厂主要水污染物排放标准》(DB33/2169-2018)中新建城镇污水处理厂主要水污染物排放限值,NH3-N、TP 指标排放达到《地表水环境质量标准》(GB3838-2002)III 类标准,其它指标执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准。具体标准值见表 2.2-8、表 2.2-9。

表 2.2-8 废水排放纳管标准 单位:除 pH 外,均为 mg/L

排放标准	рН	$\mathrm{COD}_{\mathrm{Cr}}$	BOD ₅	SS	NH ₃ -N	ТР	TN	LAS	石油 类
	6-9	≤500	≤300	≤400	≤35	≤8	≤70	≤20	≤20

表 2.2-9 城镇污水处理厂尾水排放污染物排放标准 单位:除 pH 外,均为 mg/L

排放标准	рН	BOD ₅	SS	石油类	$\mathrm{COD}_{\mathrm{Cr}}$	NH ₃ -N	TN	TP
GB18918-2002 一级 A 标准	6~9	≤10	≤10	≤1	/	/	/	/

DB33/2169-2018	/	/	/	/	30	/	10 (12) 1	/
GB3838-2002	/	/	/	/	/	1.0	/	0.2

注1: 括号内数值为每年11月1日至次年3月31日执行。

2、废气

本项目木工粉尘执行《大气污染物综合排放标准》(GB16297-1996)表 2 中二级排放标准限值,调漆、喷漆及烘干有机废气和打磨、批灰颗粒物执行《工 业涂装工序大气污染物排放标准》(DB33/2146-2018)中表 1 规定的大气污染物 排放限值: 具体标准限值见表 2.2-10。

表 2.2-10 废气污染物排放标准

污染物	最高允许排放浓度 (mg/m³)	最高允许排放 (kg/h)	速率	周界外浓度最高点 (mg/m³)	标准依据
	(IIIg/III)	排气筒(m)	二级	(IIIg/III)	
颗粒物	120	15	3.5	1.0	GB16297-1996

《工业涂装工序大气污染物排放标准》大气污染物排放限值

大 2.2-11 《工业从及工/1人(13米份)》从初间从 7(13米份)				WIKE	
污染物	排气筒高	排放限值	无组织排放	无组织排放监控浓度限值	
75架初	度	(mg/Nm³)	监控点	限值(mg/Nm³)	
颗粒物 ^①		30	周界外浓度最	1.0*	
秋水红初~		30	高点	1.0	
总挥发性有机物	不低于 15m	150	企业边界	4.0*	
(TVOC)		130	1E.1L.227F	4.0	
非甲烷总烃(NMHC)		80	企业边界	4.0	
苯系物		40	企业边界	2.0	
		10			
乙酸酯类		60	企业边界	乙酸丁酯: 0.5	
臭气浓度 ^②		1000	企业边界	20	

备注:①颗粒物周界外浓度最高限值参照执行《大气污染物综合排放标准》 (GB16297-1996) 中标准限值要求, TVOC无组织排放标准参照TVOC标准值执行。②臭 气浓度取一次最大监测值,单位为无量纲。

厂区内 VOCs 无组织排放执行《挥发性有机物无组织排放控制标准》 (GB37822-2019) 附录 A 中表 A.1 厂区内非甲烷总烃无组织特别排放限值; 见 表 2.2-12。

表 2.2-12 《挥发性有机物无组织排放控制标准》 单位: mg/m³

污染物项目	特别排放限值	限值含义	无组织排放监控位置
NMHC(非甲烷总	6	监控点处 1h 平均浓度值	· 在厂房外设置监控点
烃)	20	监控点处任意一次浓度值	住)房外以且血程点

食堂油烟排放执行《饮食业油烟排放标准》(GB18483-2001)(试行)中 中型标准,具体见表 2.2-13。

饮食业单位规模	小型	中型	大型
基准灶头数	≥1, <3	≥3, <6	≥6
对应灶头总功率(108J/h)	≥1.67,<5.0	≥5.0, <10	≥10
对应排气罩灶面总投影面积 (m²)	≥1.1, <3.3	≥3.3, <6.6	≥6.6
油烟最高允许排放浓度(mg/m³)		2.0	
净化设施最低去除率(%)	60	75	85

表 2.2-13 《饮食业油烟排放标准》(试行)

3、噪声

本项目施工期噪声排放执行(GB12523-2011)《建筑施工场界环境噪声排放标准》中标准限值,具体见表 2.2-15;营运期噪声排放执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类标准,南侧临岩西公路执行4类标准,具体见表 2.2-14。

表 2.2-14 建筑施工场界环境噪声排放限值 (单位: dB(A))

昼间	夜间
70	55

表 2.2-15 工业企业厂界环境噪声排放标(单位: dB(A))

类别	昼间	夜间
3 类	65	55
4 类	70	55

4、固体废弃物

一般固废贮存执行《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020),其中"采用库房、包装工具(罐、桶、包装袋等)贮存一般工业固体废物过程的污染控制,不适用本标准,其贮存过程应满足相应防渗漏、防雨淋、防扬尘等环境保护要求";危险废物贮存过程执行《危险废物贮存污染控制标准》(GB18597-2023)中相关规定。

2.3 评价工作等级与评价范围

2.3.1 评价工作等级

1、地表水环境

根据《环境影响评价技术导则—地表水环境》(HJ2.3-2018)中评价等级判定依据,项目地表水评价等级判定依据见表 2.3-1。

表 2.3-1 水污染影响型建设项目评价等级判定

	判定依据		
评价等级	排放方式	废水排放量 Q/(m³/d);	
		水污染物当量数 W/(无量纲)	
一级	直接排放	Q≥20000 或 W≥600000	
二级	直接排放	其他	
三级 A	直接排放	Q<200 且 W<6000	
三级 B	间接排放		

- 注 1: 水污染物当量数等于该污染物的年排放量除以该污染物的污染当量值(见附录 A), 计算排放污染物的污染物当量数,应区分第一类水污染物和其他类水污染物,统计第一类污染物当量数总和,然后与其他类污染物按照污染物当量数从大到小排序,取最大当量数作为建设项目评价等级确定的依据。
- 注 2: 废水排放量按行业排放标准中规定的废水种类统计,没有相关行业排放标准要求的通过工程分析合理确定,应统计含热量大的冷却水的排放量,可不统计间接冷却水、循环水以及其他含污染物极少的清净下水的排放量。
- 注 3: 厂区存在堆积物(露天堆放的原料、燃料、废渣等以及垃圾堆放场)、降尘污染的, 应将初期雨污水纳入废水排放量,相应的主要污染物纳入水污染当量计算。
- 注 4:建设项目直接排放第一类污染物的,其评价等级为一级;建设项目直接排放的污染物 为受纳水体超标因子的,评价等级不低于二级。
- 注 5: 直接排放受纳水体影响范围涉及饮用水水源保护区、饮用水取水口、重点保护与珍稀水生生物的栖息地、重要水生生物的自然产卵场等保护目标时,评价等级不低于二级。
- 注 6: 建设项目向河流、湖库排放温排水引起受纳水体水温变化超过水环境质量标准要求, 且评价范围有水温敏感目标时,评价等级为一级。
- 注 7: 建设项目利用海水作为调节温度介质,排水量≥500 万 m³/d,评价等级为一级;排水量<500 万 m³/d,评价等级为二级。
- 注 8: 仅涉及清净下水排放的,如其排放水质满足受纳水体水环境质量标准要求的,评价等级为三级 A。
- 注 9: 依托现有排放口,且对外环境未新增排放污染物的直接排放建设项目,评价等级参照间接排放,定为三级 B。
- 注 10: 建设项目生产工艺中有废水产生,但作为回水利用,不排放到外环境的,按三级 B 评价。

根据《环境影响评价技术导则 地表水环境》(HJ 2.3-2018),项目废水经厂区预处理达到纳管标准后排入缙云县第三污水处理厂处理达标后排放,为间接排放方式,评价等级为三级 B,可不进行水环境影响预测,主要分析水污染控制和水环境影响减缓措施有效性评价和依托污水处理设施的环境可行性评价。

2、地下水环境

根据《环境影响评价技术导则-地下水环境》(HJ610-2016)中关于建设项目地下水评价工作等级的规定,项目地下水评价等级各项判定依据见表 2.3-2。

表 2.3-2 地下水环境敏感程度分级表

敏感程度 地下水环境敏感特征	
----------------	--

敏感	水水源)准保护区;除集中式饮用水水源以外的国家或地方政府设定的与地下水环境相关的其他保护区,如热水、矿泉水、温泉等特殊地下水资源保护区。 集中式饮用水水源(包括已建成的在用、备用、应急水源,在建和规划的饮用		
较敏感	水水源)准保护区以外的补给径流区;未划定准保护区的集中水式饮用水源, 其保护区以外的补给径流区;分散式饮用水水源地;特殊地下水资源(如矿泉水、温泉等)保护区以外的分布区等其他未列入上述敏感分级的环境敏感区。。		
不敏感	上述地区之外的其他地区。		
注: a"环境每	注: a"环境敏感区"是指《建设项目环境影响评价分类管理名录》中所界定的涉及地下水的		

环境敏感区。

根据《环境影响评价技术导则 地下水环境》(HJ610-2016)附录A,本项 目属于 "N 轻工"中"109、锯材、木片加工、家具制造"中的"有电镀或喷漆工艺 的",为III类项目。

本项目选址不属于饮用水水源保护区和地方政府设定的与地下水环境相关 的其他保护区,地下水环境敏感程度属于不敏感,该建设项目为 III 类建设项目, 根据地下水导则评价工作等级分级依据判定,项目地下水环境评价等级确定为三 级。项目地下水评价等级判定依据见表 2.3-3。

类别 Ⅲ类项目 I类项目 II类项目 敏感 较敏感 不敏感

表 2.3-3 评价等级工作分级表

3、大气环境

项目营运期间产生的主要大气污染物的最大落地浓度占标率见报告书第六 章节,主要污染物最大落地浓度最大占标率 Pmax≥10%,大气环境评价工作等级 为一级。本项目排放污染物的最远影响距离(D10%)小于 2.5km,评价范围边 长取 5km。

评价工作等级	评价工作分级判据
一级	P _{max} ≥10%
二级	$1\% \le P_{\text{max}} < 10\%$
三级	P _{max} < 1%

表 2.3-4 大气环境影响评价工作等级

4、噪声

本项目所处区域声环境功能区为《声环境质量标准》(GB3096-2008)中

规定的 3 类区域,根据《环境影响评价技术导则——声环境》(HJ2.4-2021)规 定,建设项目所处的声环境功能区为(GB3096-2008)规定的3类地区,或建设 项目建设前后评价范围内敏感目标噪声级增高量在3dB(A)以下(不含3dB(A)), 且受影响人口数量变化不大时,按三级评价。本项目所处的声环境功能区为《声 环境质量标准》(GB3096-2008)规定的3类区,且建设项目建设前后评价范围 内敏感目标噪声级增高量在 3dB(A)以下,且受影响人口数量变化不大,因此 确定本项目噪声环境影响评价等级为三级。

5、土壤环境

根据《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018)规定, 对照导则附录A,本项目属于"其他用品制造"中的"使用有机涂层的",项目 类别为I类。

本项目为污染影响型建设项目,占地面积2.31hm²<5hm²,占地规模为小型。 项目200m范围内无耕地、园地、牧草地、饮用水水源地或居民区、学校、医院、 疗养院、养老院等土壤环境敏感目标和其他土壤环境敏感目标,按照表2.3-5土壤 敏感程度分级表判断可得,本项目周边土壤环境为不敏感。

依据《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)"评价工 作等级分级表",确定土壤环境影响评价工作等级为二级。

表 2.3-5 污染影响型敏感程度分级表

敏感程度	判别依据
敏感	建设项目周边存在耕地、园地、牧草地、饮用水水源地或居民区、学校、医院、疗养院、养老院等土壤环境敏感目标的
较敏感	建设项目周边存在其他土壤环境敏感目标的
不敏感	其他情况

占地规模 I类 II类 III类 评价工作等级 大 中 大 中 大 中 小 小 小 敏感程度 一级 一级 一级 二级 二级 二级 三级 三级 三级 敏感 二级 三级 三级 较敏感 一级 一级 二级 二级 三级 二级 二级 三级 不敏感 一级 二级 三级 三级 注:"-"表示可不开展土壤环境影响评价工作。

表 2.3-6 污染影响型评价工作等级划分表

6、环境风险

根据《建设项目环境风险评价技术导则》(HJ 169-2018)中风险评价工作等级划分方法,本项目危险物质数量与临界量比值(Q)<1,环境风险潜势为I。因此,本项目环境风险评价等级为简单分析。

表 2.3-7 环境风险评价工作等级划分

评价工作等级 一 二 三 简单分析 a	环境风险潜势	IV 、IV+	III	II	I
	评价工作等级	_		<u> </u>	简单分析 a

a 是相对于详细评价工作内容而言,在描述危险物质、环境影响途径、环境危害后果、风险防范措施等方面给出定性的说明。见附录 A。

7、生态环境

本项目为迁建项目,属于家具制造业,为污染影响类项目。本项目占地面积为 0.023km² < 20km², 项目所在地为工业用地,不涉及国家公园、自然保护区、世界自然遗产、重要生境、自然公园、生态保护红线等,根据《环境影响评价技术导则 生态影响》(HJ19—2022),生态影响评价属于三级评价。

2.3.2 评价范围

根据环境功能区划和保护目标要求,按照确定的各环境要素的评价等级和技术导则相关规定,结合工程沿线环境特征,本次环境影响评价的范围确定见表 2.3-8。

序号 环境要素 评价等级 评价范围 厂界向外 200m 范围 1 声环境 三级 以厂区中心区域,取边长为5km的矩形区域 2 环境空气 一级 地下水环境 三级 企业边界 6km 范围 3 对依托污水处理设施进行环境可行性分析:覆盖环境风险 4 地表水环境 三级 B 影响范围所及的水环境保护目标水域 二级 厂区外扩 0.2km 范围内 5 土壤环境 在描述危险物质、环境影响途径、环境危害后果、风险防 简单分析 6 环境风险 范措施等方面给出定性的说明 7 生态环境 三级 项目所占地块区域

表 2.3-8 环境影响评价范围确定表

2.4 相关规划及环境功能区划

2.4.1 环境功能区划

2.4.1.1 环境空气质量功能区划

根据《缙云县环境空气质量功能区划图》(划分图见附图3),本项目所在

区域为环境空气质量功能区的二类区。

2.4.1.2 地表水环境质量功能区划

根据浙政函【2015】71号《浙江省人民政府关于浙江省水功能区水环境功能区划分方案(2015)的批复》及《浙江省水功能区水环境功能区划分方案(2015)》,本项目地表水水功能区为南溪缙云农业、工业用水区,水环境功能区为农业、工业用水区,目标水质为III类。

河	序号	水功能区		水环境功能区		功能区范围	目标水
流		编码	名称	编码	名称	切肥色祖国	质
武义江(南溪)	钱 塘 12 6	G01014008 03013	南溪缙云农 业、工业用 水区	331122GA01 0402030350	农业、工 业用水区	韩畈拦水 坝~缙云永 康交界处 (姓姚)	目标: III

表 2.4-1 水环境功能区划表

2.4.1.3 地下水环境质量功能区划

本项目所在区域未进行地下水环境质量功能区规划,根据调查,项目所在区块不对地下水进行开放利用,建议本项目地下水执行 III 类水标准。

2.4.1.4 声环境质量功能区划

对照《缙云县声环境功能区划分方案》(缙云县人民政府,2018.12),本项目未纳入该声环境功能区划范围内。根据《声环境质量标准》(GB3096-2008)中相关规定,"以工业生产、仓储物流为主要功能,需要防止工业噪声对周围环境产生严重影响的区域"为3类声环境功能区;交通干线两侧一定距离之内,需防止交通噪声对周围环境产生严重影响的区域为4a类(城市主次干路)。本项目选址位于工业区内,项目用地属于工业用地,因此,项目所在地为3类声环境功能区,南侧临岩西公路执行4a类标准。

2.4.2 《缙云县"三线一单"生态环境分区管控方案》

1、生态保护红线符合性分析

本项目位于洋山工业区内,不在当地饮用水源、风景区、自然保护等生态保护区内,不在缙云县生态保护红线范围内,满足生态保护红线要求。

2、环境质量底线:

①地表水环境质量现状情况

根据《2022年丽水市生态环境状况公报》,项目附近河道 2021-2022年新建镇水源地、宅基水质均达到《地表水环境质量标准》(GB3838-2002)中的 III 类标准,水质现状满足对应的水功能区划的要求。

②大气环境质量现状情况

根据《2022年丽水市生态环境状况公报》,项目所在区域各污染因子 PM_{2.5}、PM₁₀、NO₂、SO₂、CO、O₃浓度均达到《环境空气质量标准》(GB3095-2012)中的二级标准,所在区域环境空气质量为达标区域。

本项目为迁建项目,根据现状监测数据,项目所在区域各污染因子均能达到 相应环境质量标准,本项目实施后各项污染物均能做到达标排放,因此本项目实 施后不会突破环境质量底线。

3、资源利用上线:

本项目营运过程中需消耗一定量的电及水资源,利用量相对区域资源总量较少;项目用地为工业用地,符合当地土地规划要求,亦不会达到项目所在区域土地资源利用上线,不突破地区能源、水、土地等资源消耗的"天花板"。

4、生态环境准入清单

根据缙云县人民政府印发的《缙云县"三线一单"生态环境分区管控方案》, 对项目"三线一单"符合性作出分析,本项目位于重点管控单元内,管控单元名 称为"浙江省丽水市缙云县产业集聚重点管控区",符合性分析见下表。

	(三线一 単)	管控要求	本项目情况	符合 性分 析
	管控单 编码	ZH33112220051	/	/
	管控单 名称	浙江省丽水市缙云县产业集聚重点管控区	/	/
	単元分 类	重点管控单元 51	/	/
生态环境准	空间 布局 引导	原则上不得新建或扩建三类工业项目(列入市级及以上重大项目除外),鼓励对三类工业项目进行淘汰和提升改造。合理规划居住区与工业功能区,在居住区与工业区、工业企业之间设置防护绿地、生活绿地等隔离带	本项目位于洋 山工业区,项目 为二类工业项 目	符合

表 2.4-2 缙云县"三线一单"生态环境分区管控方案符合性分析

入清单	污染 排管	严格实施污染物总量控制制度,根据区域环境质量改善目标,削减污染物排放总量。新建二、三类工业项目污染物排放水平要达到同行业国内先进水平。加快落实污水处理厂建设及提升改造项目,推进工业园区(工业企业)"污水零直排区"建设,所有企业实现雨污分流。加强土壤和地下水污染防治与修复。	本标代总采目水行水落废项源防对水项通减控措染可国项污管格制施和控措操可国项污管格制施和共产品,以为人人,以为人人,以为人,以为人,以为人,以为人,以为人,以为人,以为人,以	符合
	环境 风险 防控	定期评估沿江河湖库工业企业、工业集聚区环境和健康风险。强化工业集聚区企业环境风险防范设施设备建设和正常运行监管,加强重点环境风险管控企业应急预案制定,建立常态化的企业隐患排查整治监管机制,加强风险防控体系建设。	企业将强化环 境风险防范设 施设备建设和 正常运行监管, 拟开展企业应 急预案制定,建 立常态化的查整 业隐患排查整 治监管机制;	符合
	资源 开效率 要求	推进工业集聚区生态化改造,强化企业清洁生产 改造,推进节水型企业、节水型工业园区建设, 落实煤炭消费减量替代要求,提高资源能源利用 效率	企业将采用节 能设备开展生 产,生产过程中 将节约用水和 用电	符合

综上,项目的建设符合《缙云县"三线一单"生态环境分区管控方案》相关 要求。

2.4.3 规划环评符合性分析

2.4.3.1《缙云县新建镇洋山工业区与零星地块控制性详细规划(2022.8)》 符合性分析

1、规划范围及规模

本次规划范围调整地块总面积约 94.03 公顷,包括洋山工业区和另外 3 个零星地块。

洋山工业区:北至新建溪,南至岩西线,东至新330国道,西至高速公路,

总面积约88.45 公顷。

地块一:位于新溪路与经九路交叉口西北,面积约0.81公顷。

地块二:位于纬一路与新溪路交叉口东南,面积约1.68公顷。

地块三:位于新建路与溪滨路交叉口西北,面积约1.38公顷。

地块四:位于新330国道以东,新建溪以北,面积约1.71公顷。

2、用地规划

规划区城乡建设用地面积 94.03 公顷,用地类型包括二类城镇居住用地(R2)、机关团体用地(A1)、老年人社会福利用地(A61)、一类工业用地(M1)、二类工业用地(M2)、公园绿地(G1)、防护绿地(G2)以及部分交通运输用地。

3、环境保护规划

(1) 水环境质量目标

优先对饮用水水源进行保护和治理,水源地的地面水质达到Ⅱ类水质要求, 以满足工农业用水要求。工业废水与生活污水处理率达到 90%。

(2) 大气环境质量目标

大气环境质量达到国标《环境空气质量标准》(GB3095—1996)二级标准要求,烟尘控制区覆盖率和汽车尾气达标率均达到 100%。

(3) 声环境质量目标

综合居住区为噪声环境 1 类区,噪声平均等效声级昼间不高于 55dB(A),夜间不高于 45dB(A);居住、商业和工业的混杂区为噪声环境 2 类区,昼间不高于 60dB(A),夜间不高于 50dB(A);工业区为噪声环境 3 类区,昼间不高于 65dB(A),夜间不高于 55dB(A);交通干线两侧为噪声环境 4 类区,昼间不高于 70dB(A),夜间不高于 55dB(A)。

(4) 固体废物控制目标

镇区工业固体废弃物综合利用率达 95%以上;生活垃圾收集实行袋装化,逐步推行分类收集;垃圾清运机械化、半机械化程度达到 100%。

(5) 规划措施

水环境保护对策:促进企业清洁生产,建设节水型新城,加强工业污染源治理,强化污染物总量控制,实施污水集中治理,改善水环境质量。

大气环境保护对策:调整能源结构,使用清洁能源,提倡节能政策,积极发展集中供热,加强对工艺废气的管理,加强尾气的综合治理。

声环境保护对策:建立噪声达标区,控制城市道路交通噪声,加强社会生活噪声管理,加强施工噪声管理。

固体废弃物管理对策:制定工业固体废物资源化政策,大力开展综合利用,加强危险废物的治理,提高工业固体废物处置率,加强排污收费,促进工业固体废物的治理,有效处理处置生活垃圾。

符合性分析:项目选址位于洋山工业区,用地性质为二类工业用地;本环评报告提出的废水、废气、噪声、固废污染防治措施满足规划措施要求,通过采取相关措施后,可满足规划环境保护目标;因此,符合《缙云县新建镇洋山工业区与零星地块控制性详细规划(2022.8)》相关要求。

2.4.3.2 规划环评符合性分析

根据调查及资料收集,区域目前暂未编制规划环境影响评价报告。

2.5 主要环境保护目标

根据调查,项目周边的主要环境保护目标及规划环境保护目标见表 2.5-1、图 2.5.1。

		坐	标				相对	
环境要	 名称			保护	规模	环境功	广	相对厂址
素		X	Y	对象	79015	能区	址方	距离 (m)
							位	
	笕川村	120.041878	28.724803	居民	约 1800 人		东北	414
	前朱村	120.051470	28.731991	居民	约 500 人		东北	1700
	后山沿	120 051727	20.72(25)	로보	<i>\\</i> ∆ 200 \		た ル	2100
	村	120.051727	28.736356	居民	约 300 人		东北	2100
	坑口西	120.050826	27.741699	居民	 约 100 人		东北	2400
上层町	村			卢凡	\$3.100)(打拉克片	小山	2400
大气环境	宅基村	120.063787	28.738312	居民	约 2300 人	环境空气 · 二类区 · 二类区 · .	东北	2400
児	缙云县							
	马渡小	120.058594	28.730297	师生	约 450 人		东北	2200
	学							
	马渡村	120.055997	28.727851	居民	约 1700 人		东北	1700
	三都村	120.052607	28.722394	居民	约 900 人		东	1200
	梅溪村	120.050333	28.717558	居民	约 2900 人		东	757

表 2.5-1 环境保护目标

	和源村	120.044518	28.711442	居民	约 3700 人		东南	678
	浣花溪	120.055032	28.702144	居民	约 850 人		东南	2300
	三东马	120.037007	28.701166	居民	约 230 人		南	1900
	马桥头	120.038166	28.698004	居民	约 120 人		南	2300
	洋山村	120.029433	28.719364	居民	约 1580 人		西	465
	寺根村	120.019112	28.713474	居民	约 730 人		西南	1700
	庙后村	120.009155	28.713098	居民	约 820 人		西南	2400
	溪南村	120.016966	28.705946	居民	约 1830 人		西南	2000
	溪岩下	120.010872	28.703951	居民	约 110 人		西南	2390
	王弄村	120.012031	28.700940	居民	约 120 人		西南	2460
	新建镇	120.019884	28.724163	居民	约 4.3 万人		西北	1100
	集镇区	120.017004	20.724103	ЛИ	51 4.3 /1/		1240	1100
	宏坦村	120.023060	28.740043	居民	约 560 人		西北	2430
	规划住	120.045494	28.722977	居民	约 1000 人		 东、北	665
	宅用地						., . , .	
地表水	南溪	120.038381	28.723843	地表	中河	GB3838-2002	北	约 390
环境				水		III 类		
地下水	评价范围	不涉及生活供力	水水源地准保	护区、生	活供水水源地准	保护区以外的补	给径流区	及地下水环
环境			境	相关的其	他保护区等敏感	$\overline{\mathbf{X}}$		
土壤	项目周边 200m 范围内不涉及土壤环境保护目标							
声环境	项目周边 200m 范围内不涉及声环境保护目标							
生态环境		评价范围不没	步及特殊生态	敏感区、	重要生态敏感区		要求对象	

备注:新建镇集镇区包括新建镇中心幼儿园、新建小学、新建中学、新建派出所、兴城公寓、天欣新都 花园等镇区的居民区、医院、学校等。

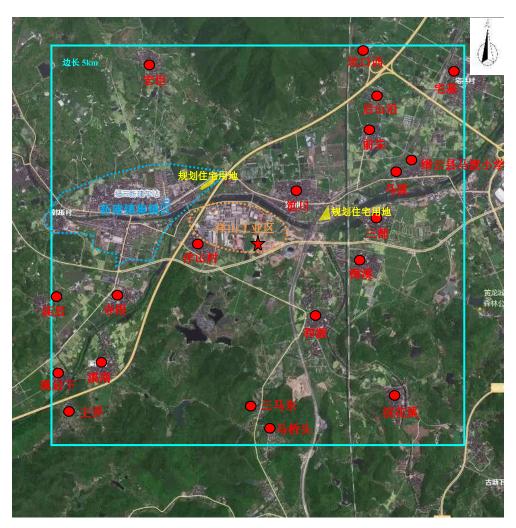
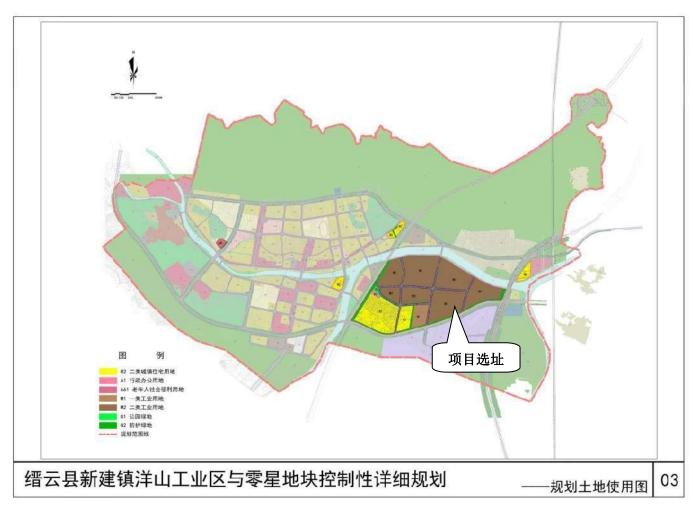



图 2.5.1 主要环境保护目标分布图

附图 2.5.2: 缙云县新建镇洋山工业区与零星地块控制性详细规划——规划土地使用图

3 原有项目工程分析

3.1 原有项目工程分析

3.1.1 原有项目概况

浙江家家智能家居有限公司成立于 2010 年 9 月,租用缙云县爱立特工贸有限公司位于缙云县新建镇洋山工业区 1 号的闲置厂房生产,主要从事木质饰面板和木门等产品的生产和销售。目前企业生产规模为年产木饰面 10 万 m²、木门 2 万樘。

3.2 原有环保审批情况

浙江家家智能家居有限公司于 2018 年委托中环联新(北京)环境保护有限公司编制了《年产 5 万平方米木质饰面板及 2 万樘木门整治提升技改项目现状环境影响评估报告》,2018 年通过环保备案(编号: 2018-008); 2021 年企业委托浙江环昌科技有限公司编制了《年产 10 万平方智能定制家居木饰面板项目环境影响报告表》,同年取得丽水市生态环境局缙云分局出具的审批意见(丽环建缙(2021)39 号)。2022 年 5 月,企业自主完成了"年产 10 万平方智能定制家居木饰面板项目"竣工环境保护验收工作,企业总产能为: 年产木饰面 10 万 m²、木门 2 万樘。

2022年5月25日,企业编制的《浙江家家智能家居有限公司突发环境事件应急预案》于管理部门备案,备案编号为: 321400-2022-012-L。

2023 年 4 月 3 日 , 企 业 变 更 了 排 污 许 可 证 , 证 书 编 号: 91331122562364527A001Q, 有效期为: 2023 年 4 月 18 日至 2028 年 4 月 17 日。 浙江家家智能家居有限公司审批、验收及实际生产情况见表 3.1-1。

环评批复 环评批复产量 项目名称 验收文号 文号 年产5万平方米木质饰面板及2 年产木饰面5万 编号: 2018-008 万樘木门整治提升技改项目现 m²、木门 2 万樘 状环境影响评估报告 年产 10 万平方智能定制家居木 年产木饰面 10 万 丽环建缙 (2021) 39 号 自主验收 饰面板项目环境影响报告表 m²、木门 2 万樘 《突发环境事件应急预案》于2022年5月25日在丽水市生态 应急预案 环境局缙云分局备案,备案号 321400-2022-012-L。

表 3.1-1 环保审批验收情况一览表

	2023年4月3日,企业变更了排污许可证,证书编号:
排污许可证	91331122562364527A001Q,有效期为: 2023 年 4 月 18 日至 2028
	年 4 月 17 日

3.3 原有项目现状调查

3.3.1 原有项目基本情况

1、产品方案

原有项目产品方案见表 3.1-2:

表 3.1-2 主要产品名称及规模

序号	产品名称	产能
1	木饰面	10万 m²/a
2	木门	2 万樘/a

2、主要生产设备

表 3.1-3 企业主要生产设备配备情况一览表

		衣 3.1-3 企业土安生厂以金	田田川	- 见衣							
序	名称	型号	数量(台	使用工艺/	备注						
号	4 <u>1</u> 147	土 ↓	/套)	产品/用途	田仁						
	原有项目生产设备										
1	高速电脑裁板锯	NP330FG	1								
2	精密推台锯	MJ6132	7								
3	数控开料机	F6	1								
4	开料多面锯	/	1								
5	手拉锯	/	2								
6	电子锯	NP280FG	1	开料	保留,搬迁						
7	CNC 开料机	/	1								
8	卧式带锯机	MJ3971A	1								
9	推台锯	MJ6132D	1								
10	自动单片纵锯机	QMJ163S	1		至新厂继续						
11	气动截料锯	GB12557	1		· 投入生产线						
12	工业台钻	Z4112	1		使用						
13	六面钻	NCB612DT	2	· 钻孔	12/11						
14	台式钻床	ZS4116	2	11111							
15	多排木工钻床	MZ273214D	1								
16	木工压刨床	MB103DM	1	 							
17	单面木工压刨床	MB105HZ	2	7144							
18	木工铣床	MX5117B	8								
19	木工镂铣机	MX5068	3	铣榫							
20	立式单轴木工镂	MXS5115A	1	Pu1+							
20	铣机	WIASJIIJA	1								

21	砂光机	SR-RP1300	1	
22	平立砂带机	2250*200	1	- 砂光
23	动力琴键砂光机	/	2	
24	磨机			
25	封边机	HH506	6	
26	叠臂曲线封边机	W2	1	
27	窄边自动封边机	NB5JN	1	封边
28	封边接料机	FBS-210020	1	
29	雕刻机	/	3	me 2
30	激光雕刻机	卓诚激光	2	- 雕刻
31	榫头机	/	1	铣榫
32	90 度弯道滚筒机	D3600X	2	打磨
33	冷压机	YW3248*50/MH3284*60	9	마는 스
34	热压机	MH3848	2	┥ 胶合
35	门扇加工中心	/	1	木门生产
36	合页开孔机	MZ4211	2	打孔
37	液压升降机	/	2	
38	升降台	/	3	物料传送
39	输送机	PKT-C1213	2	
40	液压剪切机	MQJ310	2	开料
41	缝皮机	LS-1800	1	组装
52	双头切铝锯	/	3	
43	单头钻铝机	/	2	下料
44	高速侧孔机	HM-C5	1	
45	涂胶机	/	2	胶合
46	滚胶机	/	3	
47	齿接机	/	1	
48	裁皮条机	/	1	
49	高频钉角机	/	1	
50	45 度切角机	/	1	21.农
51	卷皮机	/	1	
52	缝皮机	LVS-1250	1	
53	边缘滚涂砂光机	/	1	砂光
54	拉丝机	/	1	11276
55	UV 辊涂线	/	1	
56	淋涂线	/	1	涂装
57	喷涂线	/	2	
58	螺杆空压机	/	3	为生产设 备提供压 缩空气

3、主要原辅材料及能源消耗

根据建设单位提供的资料,满负荷生产的情况下主要原辅材料消耗情况见表 3.1-4。

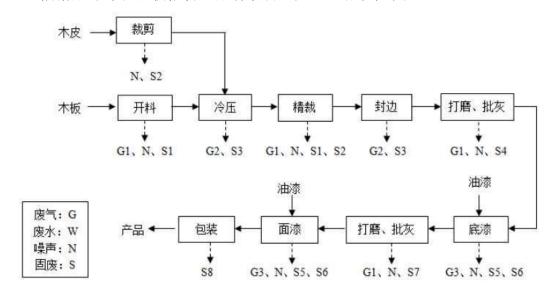

序号	名称	原有项目年用量	包装方式	存放场所
1	多层板	3500t/a	直接汽车运输,	原料仓库
2	人造板	3300/a	无需包装	原料仓库
3	木皮	38 万 m²/a	成卷	原料仓库
4	水性面漆		25kg/桶	原料仓库
5	水性底漆	55t/a	25kg/桶	原料仓库
6	水性固化剂		25kg/桶	原料仓库
7	油性面漆	6.1t/a	25kg/桶	原料仓库
8	油性底漆	0.11/a	25kg/桶	原料仓库
9	油性固化剂	1.3t/a	25kg/桶	原料仓库
10	油性稀释剂	1t/a	25kg/桶	原料仓库
11	UV 辊涂底漆	12t/a	25kg/桶	原料仓库
12	胶粘剂	1.5t/a	25kg/桶	原料仓库
13	热熔胶	1t/a	25kg/桶	原料仓库
14	包装材料	8t/a	成卷	原料仓库
15	封边条	2t/a	成卷	原料仓库
16	腻子粉	1t/a	20kg/包	原料仓库
17	砂纸	5000 张/a	100 张/包	原料仓库

表 3.1-4 主要原辅料及能源消耗

备注: 多层板、人造板每张板材规格为 1.22m×2.44m, 厚度约为 18mm。

4、生产工艺流程

根据原环评和验收报告,原有项目生产工艺流程见图 3.1.1。

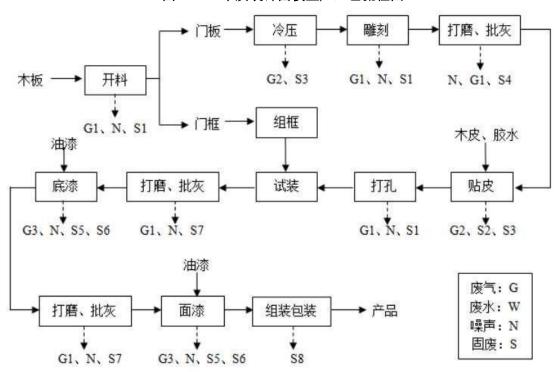


图 3.1.1 木质装饰面板生产工艺流程图

图 3.1.2 木门生产工艺流程图

5、现有工程劳动定员及工作制度

劳动定员 188人,全年工作 300天,单班 8小时制。

6、污染源强汇总

(1) 原审批项目污染源强

根据原环评、验收报告等结合企业实际情况,家家智能家居原有项目污染源 强汇总如表 3.1-5:

污染物名称			排放量(t/a)	备注
क्ते -1		废水量	918	处理到三级标准后纳管进入污 水处理厂
废水	生活废水	$\mathrm{COD}_{\mathrm{Cr}}$	0.028	按"DB33/2169-2018"标准值计
		NH ₃ -N	0.001	算
		颗粒物	0.107	
	ムナツム	乙酸酯类	0.335	
废气	木工粉尘、 喷漆废气等	苯系物	0.047	原环评计算值
	"y/冰/仪【寸	非甲烷总烃	1.224	
		TVOC	1.224	
固体	边角料、	木质粉尘	2.1	外售综合利用

表 3.1-5 原有项目污染源强汇总

废物	漆渣	0.01	委托有资质的单位处置
	废包装桶	0.3	委托有资质的单位处置
	废砂纸	0.8	外售综合利用
	收集的打磨、批灰粉尘	0.1	委托有资质的单位处置
	废包装材料	0.2	外售综合利用
	废活性炭	0.8	委托有资质的单位处置
	废布袋	0.1	外售综合利用
	生活垃圾	3	环卫部门清运处置

3.3.2 企业现状"三废"治理及排放情况

1、废水

生活污水经化粪池处理后纳管至缙云县第三污水处理厂处理达标后排入新建溪。

生产废水为水帘机废水,经过絮凝沉淀后回用,不外排。

2、废气

原有项目废气主要为木工粉尘、胶合废气、喷漆废气、晾干废气。

(1) 废气治理工艺

根据现场勘查,企业废气治理设施如下:

木工粉尘: 木工粉尘、打磨粉尘经过集气管道收集后通入布袋除尘器处理后由 15m 排气筒排放。

胶合废气、喷漆废气、晾干废气:喷漆废气经集气罩收集后先通过水帘除漆雾,再汇通胶合废气、晾干废气一起进入缓冲精密过滤箱+水喷淋+UV光解+活性炭吸附处理后通过15m排气筒排放。

3、达标排放情况

本次参考《年产 10 万平方智能定制家居木饰面板项目"竣工环境保护验收报告》中的监测数据进行达标排放情况分析。

(1) 废水

2022年3月8日-9日,对浙江家家智能家居有限公司总排口进行了废水检测,检测结果如下:

			检测项目(单位:mg/L,PH 无量纲)					
样品编 号	样品性 状	PH 值	化学需 氧量	氨氮	悬浮物	五日生 化需氧 量	总磷	石油类
1-01	微浊	7.4	130	18.3	146	49.3	3.08	3.36

表 3.1-6 废水总排口监测情况一览表

1-02	微浊	7.4	144	19.9	79	52.7	2.85	2.64
1-03	微浊	7.3	120	17.3	129	45.7	2.67	3.57
1-04	微浊	7.3	139	19.2	153	51.0	3.05	3.22
平均	匀值	/	133	18.7	127	49.7	2.91	3.20
2-01	微浊	7.3	134	20.5	138	48.4	3.19	3.07
2-02	微浊	7.3	151	19.0	116	54.5	3.13	2.75
2-03	微浊	7.2	137	21.1	105	47.5	3.31	2.34
2-04	微浊	7.2	146	19.6	127	51.0	2.92	2.84
平均	匀值	/	142	20.0	122	50.4	3.14	2.75
评价	标准	6-9	500	35	400	300	8	20

根据上表,家家智能家居总排口废水中 pH 值、悬浮物、化学需氧量、五日生化需氧量、石油类排放浓度均符合《污水综合排放标准》(GB8978-1996)中三级标准,其中氨氮、总磷符合《工业企业废水氮、磷污染物间接排放限值》(DB33/887-2013)要求。

(2) 废气

2022年3月8日-9日,对浙江家家智能家居有限公司厂界无组织废气和有组织废气进行了检测,检测结果如下:

臭气浓度 非甲烷总 检测点位 样品编号 颗粒物 二甲苯 乙酸乙酯 乙酸丁酯 (无量 烃 纲) 0.63 < 0.005 1-1 0.100 < 0.0015 < 0.005 <10 1-2 0.68 0.067 < 0.0015 < 0.005 < 0.005 <10 上风向1 < 0.005 <10 1-3 0.680.133 < 0.0015 < 0.005 0.46 0.167 < 0.0015 < 0.005 < 0.005 <10 1-4 1.82 <10 2-1 0.485 < 0.0015 < 0.005 < 0.005 2-2 1.73 0.418 < 0.0015 < 0.005 < 0.005 <10 上风向 2 2-3 1.56 0.384 < 0.0015 < 0.005 < 0.005 < 10 2-4 1.69 0.451 < 0.0015 < 0.005 < 0.005 <10 3-1 1.67 0.334 < 0.0015 < 0.005 < 0.005 <10 3-2 1.69 0.401 < 0.0015 < 0.005 < 0.005 <10 下风向3 1.55 0.318 < 0.0015 < 0.005 < 0.005 <10 3-3 3-4 1.51 0.368 < 0.0015 < 0.005 < 0.005 < 10 4-1 1.01 0.435< 0.0015 < 0.005 < 0.005 <10 1.22 < 0.0015 < 0.005 < 0.005 <10 4-2 0.468 下风向4 4-3 1.09 0.301 < 0.0015 < 0.005 < 0.005 <10 1.22 < 0.0015 < 0.005 < 0.005 4-4 0.418 < 10 2 评价标准 4 1.0 1.0 0.5 20

表 3.1-7 厂界无组织废气排放情况 单位: mg/m³

由上表可知,家家智能家居厂界无组织非甲烷总烃、颗粒物、二甲苯、乙酸乙酯、乙酸丁酯和臭气浓度能达到《工业涂装工序大气污染物排放标准》 (DB33/2146-2018)中表1规定的大气污染物排放限值。

表 3.1-8 木工粉尘、打磨粉尘排气筒出口废气排放情况

样品编号	标干流量(m³/h)	排放浓度(mg/m³)	排放速率(kg/h)

1-1	19927	4.3	0.0857
1-2	20056	4.0	0.0802
1-3	19722	5.8	0.114
平均值	/	4.7	0.0933
2-1	19877	4.7	0.0934
2-2	19528	3.2	0.0625
2-3	19736	3.9	0.077
平均值	/	3.9	0.076
评价标准	/	30	/

由上表可知,家家智能家居粉尘能达到《工业涂装工序大气污染物排放标准》 (DB33/2146-2018) 中表 1 规定的大气污染物排放限值。

样品编 非甲烷 臭气浓 标干流量 乙酸乙 乙酸丁 颗粒物 二甲苯 号 (m^3/h) 总烃 酯 度 酯 1-1 31.5 24411 1.488 0.095 234 6.2 4.31 1-2 24655 4.1 32.3 4.32 0.367 0.08 309 309 1-3 25361 5.2 30.8 4.49 0.504 0.122 平均值 31.5 4.37 0.099 5.2 0.786 284 / 309 2-1 24851 6.5 32.1 5.87 2.07 0.081 2-2 25709 4.8 30.1 6.14 1.86 0.091 309 2-3 24537 3.7 29.5 6.51 0.898 0.185 417 平均值 5.0 30.6 6.17 1.61 0.119 345 评价标 / 30 40 80 60 60 1000 准

表 3.1-9 有机废气排气筒出口废气排放情况

由上表可知,家家智能家居有机废气排气筒出口颗粒物、非甲烷总烃、二甲苯、乙酸乙酯、乙酸丁酯、臭气浓度能达到《工业涂装工序大气污染物排放标准》(DB33/2146-2018)中表 1 规定的大气污染物排放限值。

3、噪声

本项目噪声主要生产设备运行噪声,其噪声源强在 70~85dB(A)之间。 针对本项目生产设备产生的噪声,企业已采取以下隔声降噪措施:

- (1) 选用低噪声设备;
- (2) 对高噪声运输设备安装减振设施,并定期维护,避免因设备故障造成的噪声污染;
 - (3) 加强各厂界周围的绿化工作。

根据浙江家家智能家居有限公司验收报告中的监测数据,企业原有项目噪声排放情况如下:

表 3.1-10 厂界噪声排放现状监测

检测时段	检测点位	Leq dB (A)	Leq 标准 dB(A)	是否达标
昼间-1	1 东厂界	61.1	65	达标

	2 南厂界	62.1	65	达标
	3 西厂界	61.0	65	达标
	4 北厂界	63.6	65	达标
昼间-2	1 东厂界	63.1	65	达标
	2 南厂界	61.8	65	达标
	3 西厂界	62.5	65	达标
	4 北厂界	62.0	65	达标

根据监测结果可知,家家智能家居厂界噪声排放均能达到《工业企业厂界环境噪声排放标准》GB 12348-2008 中的 3 类标准。

4、固废

原有项目生产过程中产生的固体废物主要有边角料、木质粉尘、漆渣、废包装桶、废砂纸、收集的打磨、批灰粉尘、废包装材料、废活性炭、废布袋和生活垃圾。

边角料、木质粉尘、废砂纸、废包装材料和废布袋外售综合利用;漆渣、废包装桶、收集的打磨、批灰粉尘、废活性炭委托有资质单位处理;生活垃圾由环卫部门清运处置。

根据调查,近年来企业原有项目营运期间产生的三废均做到达标排放或妥善处置,未发生因处置不当造成的环境污染事故。

3.3.3 自行监测履行情况

家家智能家居自 2020 年领取排污许可证以来,按照《排污单位自行监测技术指南 总则》(HJ819-2017)、《排污许可证申请与核发技术规范家具制造工业》(HJ 1027—2019)等相关要求积极开展自行监测,委托有资质单位进行手工监测并上报。根据查阅全国排污许可证管理信息平台,企业 2020 年-2022 年年报齐全,符合排污许可证证后管理要求。

3.4"三废"治理措施与环保管理的存在问题与整改措施

根据现状监测报告,企业原有项目"三废"均可达标排放,但存在以下问题 ①企业排气筒、排放口标识标牌不够完善,②企业工业固废台账未及时更新。

本项目为迁(扩)建项目,本环评要求本次迁(扩)建项目实施过程中企业 应认真落实本报告提出的各项合理可行的污染防治措施,切实做到"三同时",加 强环境管理,做好环境污染防治工作,确保本项目实施后将项目对环境的影响降 到最低。 由于原有项目即将停产,接下去实施的项目为迁至新厂区后的项目(即本环评报告所提的迁建项目),因此,新厂区所需的污染防治措施全部按照本环评要求执行。

3.5 原有项目设备拆除过程的污染防治措施

原有项目停产后,厂内设备拆除后运至新厂区用于本项目,故拆除过程中涉及到环境污染,应做出必要的防范措施;企业应参照《企业拆除活动污染防治技术规定(试行)》文件要求对原有项目的设备拆除过程进行污染防治。具体如下:

(1) 管理流程

①前期准备

拆除活动业主单位应在拆除活动施工前,组织识别和分析拆除活动可能污染 土壤、水和大气的风险点,以及周边环境敏感点。

②制定拆除活动污染防治方案

业主单位组织编制《企业拆除活动污染防治方案》、《拆除活动环境应急预案》。

③组织实施拆除活动

业主单位可自行组织拆除工作或委托具备相应能力的施工单位开展拆除工作。特种设备、装备的拆除和拆解需委托专业机构开展。实施过程中,应当根据现场的情况和土壤、水、大气等污染防治的需要,及时完善和调整《污染防治方案》。

④拆除活动环境保护工作总结

拆除活动结束后,业主单位应组织编制《企业拆除活动环境保护工作总结报告》。

⑤拆除活动污染防治资料管理

业主单位应保存拆除活动过程中的污染防治相关资料并归档,如《污染防治方案》《环境应急预案》《总结报告》等,以及在拆除过程中环境检测和污染物处理处置等活动的监测报告、处理处置协议/合同复印件、危险废物转移联单等,为后续污染地块调查评估提供基础信息和依据。如拆除活动过程中实施了环境监理,应同时保存环境监理方案、环境监理报告等资料。

(2) 土壤污染防治原则要求

重点防止拆除活动中的废水、固体废物,以及遗留物料和残留污染物污染土壤。

①防止废水污染土壤

拆除活动应充分利用原有雨污分流、废水收集及处理系统,对拆除现场及拆除过程中产生的各类废水(含清洗废水)、污水、积水收集处理,禁止随意排放。

没有收集处理系统或原有收集处理系统不可用的,应采取临时收集处理施。

物料放空、拆解、清洗、临时堆放等区域,应设置适当的防雨、防渗、拦挡等隔离措施,必要时设置围堰,防止废水外溢或渗漏。

对现场遗留的污水、废水以及拆除过程产生的废水等,应当制定后续处理方案。

②防止固体废物污染土壤

拆除活动中应尽量减少固体废物的产生。对遗留的固体废物,以及拆除活动产生的建筑垃圾、第 I 类一般工业固体废物、第 II 类一般工业固体废物、危险废物需要现场暂存的,应当分类贮存,贮存区域应当采取必要的防渗漏(如水泥硬化)等措施,并分别制定后续处理或利用处置方案。

③防止遗留物料、残留污染物污染土壤

识别和登记拟拆除生产设施设备、构筑物和污染治理设施中遗留物料、残留污染物,妥善收集并明确后续处理或利用方案,防治泄露、随意堆放、处置等污染土壤。

(3) 现场清查与登记

现场清查和识别拆除活动现场的遗留物料及残留污染物、遗留设备、遗留建(构)筑物等污染土壤风险点,填写《企业拆除前现场清查登记表》。对地下管线、埋地设备设施必要时采用探测雷达等技术手段确定。

(4) 样品采集分析

清查过程中不能明确的遗留物料及残留污染物、具有潜在环境风险的设备或建(构)筑物表面沉积物,业主单位应组织开展样品采集和分析测试。

(5) 划分拆除活动施工区域

根据拆除活动及土壤污染防治需要,可将拆除活动现场划分为拆除区域、设 备集中拆解区、设备集中清洗区、临时贮存区等,实现污染物集中产生、集中收 集,防止和减少污染扩散。不同区域应设立明显标志标识,标明污染防治要点、 应急处置措施等,并绘制拆除作业区域分布平面图。

(6) 清理遗留物料、残留污染物

①分类清理

拆除施工作业前应对拆除区域内各类遗留物料和残留污染物进行分类清理。 对于收集挥发或半挥发遗留物料或残留污染物时,应在相对封闭空间内操作,设置气体收集系统和净化处理装置,必要时可搭建密闭大棚。

②包装和盛装

挥发性、半挥发性液体及半固态物质,须用密闭的容器贮存。遗留物料及污染物的包装或盛装应满足现场收集、转移要求,防止遗撒、泄露等。原包装或盛装物满足盛装条件的,应尽量使用原包装或盛装物;不能满足盛装条件的,应选择合适的收集包装或盛装设施。在包装或盛装设施明显的位置应放置标识标志或安全说明文件,载明包盛装物名称、性状、理化性质、重量、收集时间、安全性说明、应急处置要求等。

(7) 拆除遗留设备

存有遗留物料、残留污染物的设备,应将可能导致遗留物泄露的部分进行修补和封堵(排气口除外),防止在放空、清洗、拆除、转移过程中发生污染物泄露、遗撒。拆除和拆解过程中,应妥善收集和处理泄露物质;泄露物质不明确时,应进行取样分析。整体拆除后需转移处理或再利用的设备,应在转移前贴上标签,说明其来源、原用途、再利用或处置去向等,并做好登记。设备拆除过程中,应采取必要措施保证其中未能排空的物料及污染物有效收集,避免二次污染。

(8) 清理现场

拆除活动结束后,应对现场内所有区域进行检查、清理,确保所有拆除产物、 遗留物料、残留污染物等得到合理处置,不遗留土壤污染隐患。

4建设项目工程分析

4.1 基本概况

项目名称:浙江家家智能家居有限公司年产6000套智能定制家居生产线项

目

建设单位: 浙江家家智能家居有限公司

行业类别: C2110 木质家具制造

项目投资:项目估算总投资 16200 万元

建设性质:迁(扩)建

建设地点: 缙云县新建 01-M2-01-2 地块 (缙云县新建镇笕川村)

4.1.1 建设内容

4.1.1.1 项目经济技术指标

本项目位于缙云县新建 01-M2-01-2 地块(缙云县新建镇笕川村),拟新建 1#厂房、2#厂房和综合楼,地块总用地面积 23114.7m²,总建筑面积 50147.46m²,拟于该新建厂房内实施迁(扩)建项目。

总用	地面积	23114.7m ²				
总占	地面积	11341.02m ²				
总建	筑面积		50147.46m ²			
总计	容面积		49313.72m ²			
容	积率		2.13			
建筑	筑密度					
绿	地率		10%			
机动车	机动车停车位		191 个			
名称	占地面积(m²)	建筑面积(m²)	计容面积 (m²)	备注		
1#厂房	5206.31	21289.04	21289.04	4 层		
2#厂房	5022.45	20686.69	20686.69	4层,包含连廊		
综合楼(地上)	1063.18	7288.91	7 层			
综合楼(地下)	/	833.74	不计容			
门卫	49.08	49.08	/			
总计	11341.02	50147.46	49313.72	/		

表 4.1-1 项目经济技术一览表

4.1.1.2 产品方案

本项目迁建前、后项目产品方案见表 4.1-2:

	表 1-2 工文/ 丽石柳次观庆							
编号	产品名称	迁建前年产量	迁建后年产量	增减量	年生产时间(h)			
1	木饰面	10万 m²/a	30万 m²/a	+20 万 m²/a	3000			
2	木门	2 万樘/a	6 万樘/a	+4 万樘/a	3000			
3	智能定制家居	0	6000 套/a	/	3000			

表 4.1-2 主要产品名称及规模

迁建前企业生产规模为年产木饰面 10 万 m²、木门 2 万樘。本次迁(扩)建项目企业生产规模为年产 6000 套智能定制家居,主要为智能定制家居服务和生产,产品包括木饰面、木门、全屋定制智能家具(包括衣柜、床头柜、电视柜、电脑桌、梳妆台、衣帽间等),所有产品均根据客户要求进行个性化定制,产品方案中的一套指的是每位客户智能定制的所有家具,包括木饰面(50m²/户)、木门(10 樘/户)、全屋定制智能家具(包括衣柜、床头柜、电视柜、电脑桌、梳妆台、衣帽间等)(60m²/户)。

迁建后企业木饰面产能增加 20 万 m²/a,木门产能增加 4 万樘/a,此外,全屋定制智能家具产能增加 36 万 m²/a。

迁(扩)建后企业产品方案见表 4.1-3。

序号 产品名称		产量(套/a)		
1	木饰面	50m²/户	30 万 m²/a	
2 木门		10 樘/户	6 万樘/a	
3 全屋定制智能家具		60m²/户	36万 m²/a	
合计		6000	套/a	

表 4.1-3 迁(扩)建后项目产品方案一览表

注:智能定制家居实际生产过程中每位客户需求不同,产品尺寸有多个类型,本次环评根据建设方之前的生产经验,以常见、平均的情况进行产品方案的细分和后续的涂装面积估算。全屋定制智能家具 60m²/户指的是定制家具的投影面积,即长度乘以高度。

4.1.2 主要生产设备

表 4.1-4 主要生产设备清单

序	名称	型号	数量(台	使用工艺/	备注
号	石你	名称 型写 /套)		产品/用途	金 仕
		原有项目生产设	备		
1	高速电脑裁板锯	NP330FG	1		保留,搬迁
2	精密推台锯	MJ6132	7	 开料	至新厂继续
3	数控开料机	F6	1	八代 	投入生产线
4	开料多面锯	/	1		使用

5	手拉锯	/	2		
6	电子锯	NP280FG	1	1	
7	CNC 开料机	/	1		
8	卧式带锯机	MJ3971A	1		
9	推台锯	MJ6132D	1		
10	自动单片纵锯机	QMJ163S	1		
11	气动截料锯	GB12557	1		
12	工业台钻	Z4112	1		
13	六面钻	NCB612DT	2		
14	台式钻床	ZS4116	2	- 钻孔	
15	多排木工钻床	MZ273214D	1		
16	木工压刨床	MB103DM	1	77.461	
17	单面木工压刨床	MB105HZ	2	 开料	
18	木工铣床	MX5117B	8		
19	木工镂铣机	MX5068	3	上小 小社	
20	立式单轴木工镂) DV071171	4	- 铣榫	
20	铣机	MXS5115A 1			
21	砂光机	SR-RP1300	1		
22	平立砂带机	2250*200 1		砂光	
23	动力琴键砂光机	/	2		
24	磨机	/	59	打磨	
25	封边机	HH506	6		
26	叠臂曲线封边机	W2	1	++2+	
27	窄边自动封边机	NB5JN	1	封边	
28	封边接料机	FBS-210020	1		
29	雕刻机	/	3	田佐夫山	
30	激光雕刻机	卓诚激光	2	- 雕刻	
31	榫头机	/	1	铣榫	
32	90 度弯道滚筒机	D3600X	2	打磨	
33	冷压机	YW3248*50/MH3284*60	9	胶合	
34	热压机	MH3848	2	· 胶合	
35	门扇加工中心	/	1	木门生产	
36	合页开孔机	MZ4211	2	打孔	
37	液压升降机	/	2		
38	升降台	/	3	物料传送	
39	输送机	PKT-C1213	2		
40	液压剪切机	MQJ310	2	开料	
41	缝皮机	LS-1800	1	组装	
52	双头切铝锯	/	3	 下料	
43	单头钻铝机	/	2	1 11	

44	高速侧孔机	HM-C5	1		
45	涂胶机	/	2	н	
46	滚胶机	/	3	胶合	
47	齿接机	/	1		
48	裁皮条机	/	1	-	
49	高频钉角机	/	1		
50	45 度切角机	/	1	组装	
51	卷皮机	/	1	-	
52	缝皮机	LVS-1250	1		
53	边缘滚涂砂光机	/	1	<i>Ti</i> l. \V.	
54	拉丝机	/	1	砂光	
55	UV 辊涂线	/	1条		
56	淋涂线	/	1条	涂装	
57	喷涂线	/	2 条		
58	螺杆空压机	/	3	为生产设 备提供压 缩空气	
		本次迁(扩)建项目新均	曾设备清单		
1	高速电脑裁板锯	/	1		
2	精密推台锯	/	7		
3	数控开料机	/	1		
4	开料多面锯	/	1		
5	手拉锯	/	2		
6	电子锯	/	1	开料	
7	CNC 开料机	/	1		
8	卧式带锯机	/	1		
9	推台锯	/	1		
10	自动单片纵锯机	/	1		
11	气动截料锯	/	1		全部为新增
12	工业台钻	/	1		设备
13	六面钻	/	2	钻孔	
14	台式钻床	/	2	7016	
15	多排木工钻床	/	1		
16	木工压刨床	/	1	开料	
17	单面木工压刨床	/	2	月 作	
18	木工铣床	/	8		
19	木工镂铣机	/	3	铣榫	
20	立式单轴木工镂 铣机	/	1	Vu1 T	
21	砂光机	/	1	砂光	

22 平立砂带机 / 1 23 动力琴键砂光机 / 2 24 磨机 / 59 打房 25 封边机 / 6 26 叠臂曲线封边机 / 1 27 窄边自动封边机 / 1 28 封边接料机 / 1 29 雕刻机 / 3 30 激光雕刻机 / 2 31 榫头机 / 1 铣机 32 90度弯道滚筒机 / 2 打房 33 冷压机 / 9 胶布 34 热压机 / 2 打房 34 热压机 / 2 打房 35 门扇加工中心 / 1 木门 36 合页开孔机 / 2 打房 37 液压升降机 / 2 打房 38 升降台 / 3 物料 39 输送机 / 2 大利 40 液压剪切机 / 2 大利<	力 引 隼 幸 主产
24 磨机 / 59 打磨 25 封边机 / 6 26 叠臂曲线封边机 / 1 27 窄边自动封边机 / 1 28 封边接料机 / 1 30 激光雕刻机 / 2 31 榫头机 / 1 铣机 32 90 度弯道滚筒机 / 2 打压 33 冷压机 / 9 胶石 34 热压机 / 2 放在 34 热压机 / 2 打压 35 门扇加工中心 / 1 木门 36 合页开孔机 / 2 打工 37 液压升降机 / 2 物料 39 输送机 / 2 开料 40 液压剪切机 / 2 开料 41 缝皮机 / 1 组基 52 双头切铝锯 / 3 大 43 单头钻铝机 / 2 大 44 高速侧孔机	力 引 隼 幸 主产
26 叠臂曲线封边机 / 1 27 窄边自动封边机 / 1 28 封边接料机 / 3 30 激光雕刻机 / 3 31 榫头机 / 1 铣材 32 90度弯道滚筒机 / 2 打扰 33 冷压机 / 9 胶布 34 热压机 / 2 放布 35 门扇加工中心 / 1 木门 36 合页开孔机 / 2 打扰 37 液压升降机 / 2 物料 39 输送机 / 2 物料 40 液压剪切机 / 2 开料 41 缝皮机 / 1 组建 52 双头切铝锯 / 3 大 43 单头钻铝机 / 2 下划 44 高速侧孔机 / 2 股土 45 涂胶机 / 2 股土 46 滚胶机 / 3 人 47 齿接机 / 1 1	例 集 李 十
27 窄边自动封边机 / 1 28 封边接料机 / 1 29 雕刻机 / 3 雕刻 30 激光雕刻机 / 2 打握 31 榫头机 / 1 铣材 32 90 度弯道滚筒机 / 2 打握 33 冷压机 / 9 胶布 34 热压机 / 2 放充 35 门扇加工中心 / 1 木门 36 合页开孔机 / 2 打石 37 液压升降机 / 2 物料 39 输送机 / 2 物料 40 液压剪切机 / 2 开料 41 缝皮机 / 1 组建 52 双头切铝锯 / 3 下划 43 单头钻铝机 / 2 下划 44 高速侧孔机 / 1 上 45 涂胶机 / 2 胶土 46 滚胶机 / 3 大 47 齿接机 / 1 1	例 集 李 十
27 窄边自动封边机 / 1 28 封边接料机 / 1 29 雕刻机 / 3 30 激光雕刻机 / 2 31 榫头机 / 1 铣杆 32 90度弯道滚筒机 / 2 打握 33 冷压机 / 9 胶石 34 热压机 / 2 放石 34 热压机 / 2 打压 36 合页开孔机 / 2 打石 37 液压升降机 / 2 物料付 39 输送机 / 2 大村 40 液压剪切机 / 2 开料 41 缝皮机 / 1 组建 52 双头切铝锯 / 3 大村 43 单头钻铝机 / 2 下划 44 高速侧孔机 / 1 上 45 涂胶机 / 2 胶石 46 滚胶机 / 3 大村 46	例 集 李 十
29 雕刻机 / 3 雕刻 30 激光雕刻机 / 2 31 榫头机 / 1 铣材 32 90度弯道滚筒机 / 2 打握 33 冷压机 / 9 胶布 34 热压机 / 2 放行 35 门扇加工中心 / 1 木门空 36 合页开孔机 / 2 打石 37 液压升降机 / 2 物料付 39 输送机 / 2 40 液压剪切机 / 2 开材 41 缝皮机 / 1 组型 52 双头切铝锯 / 3 本付 43 单头钻铝机 / 2 胶布 44 高速侧孔机 / 2 胶布 45 涂胶机 / 2 胶布 46 滚胶机 / 3 大 47 齿接机 / 1 1	華
30 激光雕刻机 / 2 31 榫头机 / 1 铣材 32 90度弯道滚筒机 / 2 打成 33 冷压机 / 9 胶布 34 热压机 / 2 胶布 35 门扇加工中心 / 1 木门至 36 合页开孔机 / 2 打石 37 液压升降机 / 2 物料件 39 输送机 / 2 折料 40 液压剪切机 / 2 开料 41 缝皮机 / 1 组型 52 双头切铝锯 / 3 下划 43 单头钻铝机 / 2 下划 44 高速侧孔机 / 1 股行 45 涂胶机 / 2 股行 46 滚胶机 / 3 股行 47 齿接机 / 1 1	華
30 激光雕刻机 / 2 31 榫头机 / 1 铣材 32 90 度弯道滚筒机 / 2 打痕 33 冷压机 / 9 胶布 34 热压机 / 2 胶布 35 门扇加工中心 / 1 木门型 36 合页开孔机 / 2 打痕 37 液压升降机 / 2 物料 39 输送机 / 2 开浆 40 液压剪切机 / 2 开浆 41 缝皮机 / 1 组建 52 双头切铝锯 / 3 下浆 43 单头钻铝机 / 2 下浆 44 高速侧孔机 / 1 1 45 涂胶机 / 2 胶布 46 滚胶机 / 3 大 47 齿接机 / 1 1	華
32 90度弯道滚筒机 / 2 打房 33 冷压机 / 9 胶布 34 热压机 / 2 胶布 35 门扇加工中心 / 1 木门至 36 合页开孔机 / 2 打房 37 液压升降机 / 2 物料付 39 输送机 / 2 大利 40 液压剪切机 / 2 开料 41 缝皮机 / 1 组型 52 双头切铝锯 / 3 下料 43 单头钻铝机 / 2 下料 44 高速侧孔机 / 1 胶布 46 滚胶机 / 3 及布 47 齿接机 / 1 1	等
33 冷压机 / 9 34 热压机 / 2 35 门扇加工中心 / 1 木门型 36 合页开孔机 / 2 打石 37 液压升降机 / 2 38 升降台 / 3 物料付 39 输送机 / 2 40 液压剪切机 / 2 开料 41 缝皮机 / 1 组型 52 双头切铝锯 / 3 43 单头钻铝机 / 2 下料 44 高速侧孔机 / 1 45 涂胶机 / 2 胶行 46 滚胶机 / 3 47 齿接机 / 1	音 上产
34 热压机 / 2 35 门扇加工中心 / 1 木门型 36 合页开孔机 / 2 打石 37 液压升降机 / 2 38 升降台 / 3 物料化 39 输送机 / 2 40 液压剪切机 / 2 开料 41 缝皮机 / 1 组型 52 双头切铝锯 / 2 下料 43 单头钻铝机 / 2 下料 44 高速侧孔机 / 1 胶行 45 涂胶机 / 3 股行 46 滚胶机 / 3 股行 47 齿接机 / 1 1	上 产
34 热压机 / 2 35 门扇加工中心 / 1 木门至 36 合页开孔机 / 2 打石 37 液压升降机 / 2 38 升降台 / 3 物料付 39 输送机 / 2 40 液压剪切机 / 2 开料 41 缝皮机 / 1 组型 52 双头切铝锯 / 3 下料 43 单头钻铝机 / 2 下料 44 高速侧孔机 / 1 胶型 45 涂胶机 / 2 胶型 46 滚胶机 / 3 及型 47 齿接机 / 1 1	上 产
36 合页开孔机 / 2 打石 37 液压升降机 / 2 38 升降台 / 3 物料化 39 输送机 / 2 40 液压剪切机 / 2 开料 41 缝皮机 / 1 组型 52 双头切铝锯 / 3 ** 43 单头钻铝机 / 2 下料 44 高速侧孔机 / 1 胶气 45 涂胶机 / 2 胶气 46 滚胶机 / 3 大 47 齿接机 / 1 **	
37 液压升降机 / 2 38 升降台 / 3 物料化 39 输送机 / 2 40 液压剪切机 / 2 开料 41 缝皮机 / 1 组型 52 双头切铝锯 / 3 43 单头钻铝机 / 2 下料 44 高速侧孔机 / 1 45 涂胶机 / 2 胶布 46 滚胶机 / 3 47 齿接机 / 1	L
38 升降台 / 3 物料付 39 输送机 / 2 40 液压剪切机 / 2 开料 41 缝皮机 / 1 组型 52 双头切铝锯 / 3 ** 43 单头钻铝机 / 2 下料 44 高速侧孔机 / 1 45 涂胶机 / 2 胶包 46 滚胶机 / 3 47 齿接机 / 1	
39 输送机 / 2 40 液压剪切机 / 2 开料 41 缝皮机 / 1 组型 52 双头切铝锯 / 3 43 单头钻铝机 / 2 下料 44 高速侧孔机 / 1 45 涂胶机 / 2 胶包 46 滚胶机 / 3 47 齿接机 / 1	
40 液压剪切机 / 2 开料 41 缝皮机 / 1 组型 52 双头切铝锯 / 3 43 单头钻铝机 / 2 下料 44 高速侧孔机 / 1 45 涂胶机 / 2 胶气 46 滚胶机 / 3 47 齿接机 / 1	专送
41 缝皮机 / 1 组型 52 双头切铝锯 / 3 43 单头钻铝机 / 2 下料 44 高速侧孔机 / 1 45 涂胶机 / 2 胶1 46 滚胶机 / 3 47 齿接机 / 1	
52 双头切铝锯 / 3 43 单头钻铝机 / 2 下料 44 高速侧孔机 / 1 45 涂胶机 / 2 胶1 46 滚胶机 / 3 47 齿接机 / 1	4
43 单头钻铝机 / 2 下料 44 高速侧孔机 / 1 45 涂胶机 / 2 胶包 46 滚胶机 / 3 47 齿接机 / 1	支
44 高速侧孔机 / 1 45 涂胶机 / 2 46 滚胶机 / 3 47 齿接机 / 1	
45 涂胶机 / 2 46 滚胶机 / 3 47 齿接机 / 1	斗
46 滚胶机 / 3 47 齿接机 / 1	
46 滚胶机 / 3 47 齿接机 / 1	
10 +1 +1 +1	
48 裁皮条机	
49 高频钉角机 / 1 组织	古
50 45 度切角机 / 1	×
51 卷皮机 / 1	
52 维皮机 / 1	
53 边缘滚涂砂光机 / 1 砂	<u>—</u> —
54 拉丝机 / 1	L
55 UV 辊涂线 / 1 条	
56 淋涂线 / 1条 涂	支
57 喷涂线 / 2条	
58 螺杆空压机 / 3 备提付 缩空	大: 江

4.1.2 主要原辅材料

1、主要原辅材料

企业原辅料消耗见表 4.1-5。

表 4.1-5 主要原辅料及能源消耗

序号	名称	原有项目 年用量	迁建项目年用 量	最大储存量	包装方式	存放场所
1	多层板	2500/	10 万张/a(约 4000t/a)	/	直接汽车	原料仓库
2	人造板	3500t/a	10 万张/a(约 4000t/a)	/	运输,无 需包装	原料仓库
3	木皮	38 万 m²/a	74305.8m ² /a	/	成卷	原料仓库
4	水性面漆		32.4t/a	3.2t	25kg/桶	原料仓库
5	水性底漆	55t/a	34.8/a	3.4t	25kg/桶	原料仓库
6	水性固化剂		6.72t/a	0.7t	25kg/桶	原料仓库
7	油性面漆	6 14/0	8.5t/a	0.8t	25kg/桶	原料仓库
8	油性底漆	6.1t/a	8.7t/a	0.8t	25kg/桶	原料仓库
9	油性固化剂	1.3t/a	3.8t/a	0.3t	25kg/桶	原料仓库
10	油性稀释剂	1t/a	6.8t/a	0.6t	25kg/桶	原料仓库
11	UV 辊涂底 漆	12t/a	36	3.6t	25kg/桶	原料仓库
12	水性胶粘剂	1.5t/a	4t/a	0.4t	25kg/桶	原料仓库
13	热熔胶	1t/a	3t/a	0.3t	25kg/桶	原料仓库
14	包装材料	8t/a	10t/a	/	成卷	原料仓库
15	封边条	2t/a	6t/a	/	成卷	原料仓库
16	腻子粉	1t/a	3t/a	0.3t	20kg/包	原料仓库
17	砂纸	5000 张/a	15000 张/a	/	100 张/包	原料仓库

备注: 多层板、人造板每张板材规格为 1.22m×2.44m, 厚度约为 18mm。

表 4.1-6 项目主要原辅材料成分表

	74 - 24 - 24 - 24 - 24 - 24 - 24 - 24 -						
项目	种类	成分	百分比%	本次环评取 值%	备注		
		醇酸树脂	45~55	52	/		
		滑石粉	15~20	20	/		
	底漆	钛白粉	10~25	20	/		
		醋酸丁酯	3~5	5	挥发份		
油性漆		聚乙烯蜡	2~3	3	/		
		醇酸树脂	45~55	50	/		
	面漆	消光粉	0~10	5	/		
	川水	钛白粉	35~40	36	/		
		助剂	1~3	2	/		

		醋酸丁酯	5~7	7	挥发份
		丙二醇甲醚醋酸酯	45~55	50	挥发份
	稀释剂	醋酸丁酯	10~20	15	挥发份
		二甲苯	30~40	35	挥发份
		聚甲苯二异氰酸酯	65~70	65	/
	固化剂	TDI	0.1~0.5	0.5	/
		醋酸丁酯	30~35	34.5	挥发份
		水性丙烯酸乳液	75~85	75~85	/
		水合硅酸镁	<5	<5	/
		水	10~15	10~15	/
		二丙二醇丁醚	<5	<5	挥发份
	底漆	改性二甲基聚硅氧烷溶 液	<5	<5	/
		2 氨基-2-甲基-1-丙醇溶 液	<5	<5	/
		杀菌剂	<5	<5	/
l 水性漆		水性丙烯酸乳液	75~85	75~85	/
小性徐		气相二氧化硅	<5	<5	/
	面漆	二丙二醇丁醚	<5	<5	挥发份
		改性二甲基聚硅氧烷溶 液	<5	<5	/
		2 氨基-2-甲基-1-丙醇溶 液	<5	<5	/
		杀菌剂	<5	<5	/
		水	10~20	10~20	/
	田仏刻	六亚甲基二异氰酸酯	70~90	70~90	/
	固化剂	丙二醇甲醚醋酸酯	10~30	10~30	/
		环氧丙烯酸酯	10~25	10~25	/
		聚氨酯丙烯酸酯	0~20	0~20	/
		1,6-己二醇二丙烯酸酯	5~20	5~20	/
		三羟甲基丙烷三丙烯酸 酯	0~10	0~10	/
UV 辊浴	徐底漆	2,4,6-三甲基苯甲酰基- 二苯基氧化膦	0.5~1	0.5~1	/
		2-羟基-2-甲基-1-苯基 丙酮	3~5	3~5	/
		钛白粉	35~50	35~50	/
		滑石粉	1~15	1~15	/
			- 胶水调配传况-	115 ===	

表 4.1-7 涂料、胶水调配情况一览表

	左田昌	年用量		油漆中挥发份		即用状态下		
项目	种类	十円里 (t/a)	调配比例	出八	百分	含量	密度	VOC 含
		(va)		成分	比(%)	(t/a)	(g/cm^3)	量(g/L)
喷底	底漆	8.7	8.7:3.5:2	醋酸丁酯	5	0.435	1.1	358.3

	ı	1	1		1			
漆 (溶	校亚			丙二醇甲醚 醋酸酯	50	1.75		
	稀释	3.5			1.5	0.525		
剂型	剂			醋酸丁酯	15	0.525		
涂				二甲苯	35	1.225		
料)	固化 剂	2.0		醋酸丁酯	34.5	0.69		
	合计	14.2	/	/	/	4.625	/	/
	面漆	8.5		醋酸丁酯	7	0.595		
喷面 漆	稀释	3.3		丙二醇甲醚 醋酸酯	50	1.65		
(溶	剂	3.3	8.5:3.3:1.8	醋酸丁酯	15	0.495	1.09	362
剂型				二甲苯	35	1.155		
涂 料)	固化 剂	1.8		醋酸丁酯	34.5	0.621		
	合计	13.6	/	/		4.516	/	/
喷底	底漆	34.8						
漆	固化	2.40	100 10 10	二丙二醇丁	2.0	1.160	1.10	22
(水	剂	3.48	100:10:10	醚	2.8	1.169	1.18	33
性涂	水	3.48						
料)	合计	41.76	/	/	2.8	1.169	/	/
喷面	面漆	32.4						
漆	固化	2.24	100 10 10	二丙二醇丁	2.5		1.10	40
(水	剂	3.24	100:10:10	醚	3.6	1.4	1.18	42
性涂	水	3.24						
料)	合计	38.88	/	/	3.6	1.4	/	/
UV 辊	涂底漆	36	直接使用,无需调配	非甲烷总烃	3.1	1.116	1.08	33

备注:本项目使用的水性漆为双组份涂料,需要水性底漆、固化剂和水调配使用,水性面漆、固化剂和水调配使用;双组份涂料是底漆/面漆与固化剂这两种组分混合后产生交联反应形成漆膜,其调配后即用状态下的 VOC 含量(g/L)数据来源于涂料厂商提供的检测报告,具体见附件 4,其 VOC 含量(质量比)是根据检测报告中 VOC 含量(g/L)和密度换算所得。

根据《中华人民共和国大气污染防治法》第四章大气污染防治措施中第四十六条中明确:工业涂装企业应当使用低挥发性有机物含量的涂料,并建立台账,记录生产原料、辅料的使用量、废弃量、去向以及挥发性有机物含量。台账保存期限不得少于三年的要求,禁止建设生产和使用高 VOCs 含量的涂料、油墨、胶黏剂等项目。

根据《低挥发性有机化合物含量涂料产品技术要求》(GB/T 38597-2020) 中"表 1 水性涂料中 VOC 含量的要求—木器涂料—色漆—挥发性有机物(VOC) 限量值<220g/L"、"表 2 溶剂型涂料中 VOC 含量的要求—木器涂料(限工厂化涂装用)—挥发性有机物(VOC)限量值<420g/L"。由上表可知,本项目使用的溶剂型涂料和水性涂料不属于高挥发性有机物含量的涂料。

根据《胶粘剂挥发性有机化合物限量》(GB 33372-2020)中"表 2 水基型胶粘剂 VOC 含量限量—木工与家具—聚乙酸乙烯酯类—限量值≤100g/L",本项目使用的水性胶粘剂不含苯、甲苯有毒有害有机溶剂,仅含有微量游离化学单体,符合《胶粘剂挥发性有机化合物限量》(GB 33372-2020)相关要求;本项目使用的热熔胶是一种不需溶剂、不含水分 100%的固体可熔性聚合物,满足《胶粘剂挥发性有机化合物限量》(GB 33372-2020)相关要求。

项目主要原辅材料主要理化特性见表 4.1-8。

表 4.1-8 原辅材料主要理化特性一览表

原材料名称	性质
	是一种用于拼接集成材等木制品的粘合剂,适合用于非结构材及结构
	材用集成材等的拼板粘合,该水性胶粘剂颜色为乳白色粘稠液体,主要成
水性胶粘剂	分为聚醋酸乙烯(EVA)树脂 84%、增粘树脂 11%、石蜡 4%、可塑剂 0.3%、
	阻燃剂 0.6%、助剂 0.1%,不含苯、甲苯有毒有害有机溶剂,含有微量游离
	化学单体。
	热熔胶是一种不需溶剂、不含水分 100%的固体可熔性聚合物;它在常
	温下为固体,加热熔融到一定温度变为能流动,且有一定粘性的液体。熔
	融后的热熔胶,呈浅棕色或白色。热熔胶由基本树脂、增粘剂、粘度调节
热熔胶	剂和抗氧剂等成分组成。热熔胶的基本树脂是乙烯和醋酸乙烯在高温高压
	下共聚而成的,即 EVA 树脂;一般增粘剂有松香,改性松香(138 或 145),
	C5 石油树脂, C9 石油树脂, 萜烯树脂等; 调节剂一般选择石蜡, 微晶蜡。
	合成蜡(PE 或 PP),佛托蜡等。
	为白色或类白色、微细、无砂性的粉末,手摸有油腻感。无臭,无味。
滑石粉	本品在水、稀矿酸或稀氢氧化碱溶液中均不溶解。可作药用。主要成分为
	含水硅酸镁,经粉碎后,用盐酸处理,水洗,干燥而成。
 钛白粉	学名为二氧化钛(Titanium Dioxide),它是一种染料及颜料,其分子
TA [] 10)	式为 TiO2,分子量为 79.8658。
	消光粉是由聚丙烯酰胺,成膜物原料制成的新型皮革补伤消光剂。用
	于深色、浅色表面伤残,深伤残皮革粒面修补,其遮盖力强,补伤效果好。
	使用时不必与其它软性皮化材料配方,可直接用于"刷涂"或"点涂"修补,简
 消光粉	化了原有的使用方法。制造工艺简单,原料易得,易形成批量生产和推广
111 7 L 171	应用,满足皮革工业的需要。可分为油性消光粉和水性消光粉。广泛应用
	于乳胶漆,内外墙涂料,醇酸树脂漆和聚酯漆等多种涂料体系中。应用涂
	料、油漆中,能均衡的控制涂膜表面光泽,增加涂膜的耐磨性和抗划痕性,
	去湿、除臭、净化空气,隔音、防水和隔热、通透性。
醋酸丁酯	化学式为 CH ₃ COO(CH ₂) ₃ CH ₃ ,为无色透明有愉快果香气味的液体,

	熔点: -78℃,沸点: 126.6℃,密度: 0.8825g/cm³。急性毒性: LD ₅₀ : 10768mg/kg
	(大鼠经口); >17600mg/kg(兔经皮), LC ₅₀ : 390ppm(大鼠吸入, 4h)
	包括消泡剂、润湿剂、分散剂、乳化剂、催干剂和增韧剂,一般为不
助剂	挥发的成分。
丙二醇甲醚醋	化学式为 C ₆ H ₁₂ O ₃ ,熔点: -87°C,沸点: 145-146°C, 无色透明液体,
酸酯	LD50 经口-大鼠- 8,532 mg/kg,LD50 经皮-家兔- > 5,000 mg/kg。
二甲苯	无色透明液体。有芳香烃的特殊气味。分子式为 C ₈ H ₁₀ ,是苯环上两个 氢被甲基取代的产物,存在邻、间、对三种异构体。具刺激性气味、易燃, 与乙醇、氯仿或乙醚能任意混合,在水中不溶。沸点为 137~140℃。二甲 苯属于低毒类化学物质,蒸气对小鼠的 LC 为 6000×10 ⁻⁶ ,大鼠经口最低致 死量 4000mg/kg。
聚甲苯二异氰 酸酯	TDI 甲苯二异氰酸酯的聚合物。
TDI	中文名: 甲苯二异氰酸酯。甲苯二异氰酸酯为无色透明至淡黄色液体,有刺激性气味; 遇光颜色变深。分子式 C9-H6-N2-O2。分子量 174.16。相对密度 1.22±0.01(25℃)。凝固点 3.5~5.5 ℃(TDI-65); 11.5~13.5℃(TDI-80); 19.5~21.5℃。沸点 251℃。闪点 132℃(闭杯)。蒸气密度 6.0。蒸气压0.13kPa(0.01mmHg20℃)。蒸气与空气混合物可燃限 0.9~9.5%。不溶于水;溶于丙酮、乙酸乙酯和甲苯等。容易与包含有活泼氢原子的化合物:胺、水、醇、酸、碱发生反应,特别是与氢氧化钠和叔胺发生难以控制反应,并放出大量热。与水反应生成二氧化碳是聚氨酯泡沫塑料制造过程中的关键反应之一;应避免受潮。在常温下聚合反应速度很慢,但加热至 45℃以上或催化剂存在下能自聚生成二聚物。能与强氧化剂发生反应。遇热、明火、火花会着火。加热分解放出氰化物和氮氧化物。大鼠经口 LD50: 4130 mg/kg; 吸入LCLo: 600 ppm/6H。小鼠经口 LD50: 1950 mg/kg; 吸入 LC50: 9700 ppb/4H。兔经皮 LD50: >10 mL/kg。
二丙二醇丁醚	分子式 C ₁₀ H ₂₂ O ₃ ,沸点 261.7±15.0 °C at 760 mmHg,无色液体。LD50: 1620μL/kg(大鼠经口); 5860μL/kg(兔经皮) LC50: 无资料。
乙酸乙烯酯	无色透明液体,有水果香味,熔点(℃):-93.2,沸点(℃):71.8~73,相对密度(水=1):0.93(20℃),微溶于水,溶于醇、醚、丙酮、苯、氯仿。用于有机合成,主要用于合成维尼纶,也用于粘结剂和涂料工业等。LD50:2900 mg/kg(大鼠经口);2500 mg/kg(兔经皮),LC50:14080mg/m³,4小时(大鼠吸入)。
环氧丙烯酸酯	环氧丙烯酸酯树脂又称乙烯基酯树脂,是环氧树脂和丙烯酸进行反应后溶 解于苯乙烯中的变性环氧树脂。
聚氨酯丙烯酸 酯	聚氨酯丙烯酸酯(PUA)的分子中含有丙烯酸官能团和氨基甲酸酯键,固化后的胶黏剂具有聚氨酯的高耐磨性、粘附力、柔韧性、高剥离强度和优良的耐低温性能以及聚丙烯酸酯卓越的光学性能和耐候性,是一种综合性能优良的辐射固化材料。
1,6-己二醇二丙 烯酸酯	中文别名为二丙烯酸-1,6-己二醇酯, CAS 号为 13048-33-4, 分子式为 $C_{12}H_{16}O_4$, 广泛应用于塑料、粘合剂、纺织品、橡胶、改性共聚物等,是 一种化工中间体。
三羟甲基丙烷 三丙烯酸酯	分子式 C ₁₅ H ₂₀ O ₆ , 淡黄色至黄色透明液体。主要用于紫外线固化涂料和油 墨的反应稀释剂。

2,4,6-三甲基苯 甲酰基-二苯基 氧化膦	CAS 号:75980-60-8,分子式:C ₂₂ H ₂₁ O ₂ P,分子量:348.3747。主要用于紫外固化涂料、印刷油墨、紫外固化粘合剂、光导纤维涂料等。
2-羟基-2-甲基	化学式 $C_{10}H_{12}O_2$,是一种新型高效光敏引发剂,以其引发效率高、溶解性
-1-苯基丙酮	好、低气味、低污染, 培植的感光组成物稳定性极佳, 而且耐黄变等特点迅
-1-本委内嗣	速在紫外光固化材料中得到广泛应用。

2、主要能耗

项目主要能耗见下表 4.1-9。

 序号
 原材料名称
 用量
 备注

 1
 水
 19856.72m³/a
 /

 2
 电
 60万度/a
 /

表 4.1-9 主要能耗情况

4.1.3 物料与产能匹配性分析

1、油漆用量分析

根据建设单位提供的相关资料分析,项目需要表面涂装的面积量见表 4.1-8,各类涂料涂装情况见表 4.1-10。

涂装面积=单件产品涂装面积(各上漆面面积总和)×产品年产量。

序号	产品名称	产量	每户平均需涂装面积(m ²)	总需涂装面积(m²)
1	木饰面	30 万 m²/a	40	24 万
2	木门	6 万樘/a	10.56	6.336 万
3	全屋定制 智能家具	36万 m²/a	60	36万
	合计	6000 套/a	110.56	663360

表 4.1-10 涂装面积测算一览表

对于涂装工序,企业约 80%木饰面(面积约 24 万 m²)、约有 60%的木门(面积约 6.336 万 m²) 和 100%的全屋定制智能家具(面积约 36 万 m²)需要进行表面喷涂,剩余产品采用免漆板或贴面等方式,无需喷漆,100%的全屋定制智能家具指的是家具的面板 100%需要喷涂,柜体等不需要喷涂。木饰面、木门和全屋定制智能家具产品均需采用 3 种上漆工艺,喷枪空气喷涂、辊涂和淋涂,均需用到油性漆、水性漆和 UV 辊涂底漆。

油漆消耗量(t)=漆膜厚度(μ m)×面积(m^2)× 10^{-6} ×涂料密度(g/cm^3)× 喷涂次数÷(固含量×上漆率)。

根据《大气环境影响评价实用技术》及企业原厂区实际生产情况,喷枪空气

喷涂(使用原料为水性漆、油性漆)的上漆率约在50%左右,辊涂和淋涂(使用原料为UV 辊涂底漆)的上漆率约为95%,其余未利用部分形成漆雾均进入水帘。

产品	漆膜 厚度 μm	固含量 (%)	上漆率 (%)	油漆密度 g/cm ³	涂装面积 m²	喷涂 次数	实际耗漆 量t
水性底漆	50	76.4	50	1.18	135189	2	41.76
水性面漆	40	71.4	50	1.18	294071	1	38.88
溶剂型底漆	15	65	50	1.1	138911	2	14.2
溶剂型面漆	30	66.8	50	1.09	138911	1	13.6
UV 辊涂底漆	50	96.9	95	1.08	306850	2	36
合计	/				1013932	/	144.44

表 4.1-11 各类涂料涂装情况一览表

备注:上述产品中的水性底漆、水性面漆等均为调配好后的总涂料用量, 总涂料用量为 144.44t/a,其中 137.72t/a 为外购的涂料,6.72t/a 为水。

2、上漆设备产能匹配性分析

根据建设单位车间布局设计,**1#厂房和 2#厂房涂装车间和喷枪等设置情况** 相同,涂装使用的涂料用量基本相同,具体情况为:

- (1)4个底漆房(1个油性、3个水性)、6个面漆房(1个油性、5个水性)、10个晾干房、3个调漆间,3个修色房(1个油性、2个水性),共配置20把喷枪,其中13把喷枪为每个喷漆房和修色房配置生产使用,另外7把为备用喷枪。喷枪喷漆量约60g/min(3.6kg/h)。根据上表,溶剂型涂料用量总计为底漆7.1t/a、面漆总计6.8/a,预计底漆配置的1把喷枪运行时间为1973h/a,面漆配置的1把运行时间为1889h/a;水性涂料用量总计为底漆20.88t/a、面漆总计19.44t/a,预计底漆配置的3把喷枪单个运行时间为1934h/a,面漆配置的5把喷枪单个运行时间为1080h;考虑到喷漆时存在喷壶加油漆、喷件搬运、喷枪维护等时间,因此,喷漆房按照每天10h工作制安排符合生产要求。
- (2)项目每栋生产厂房各设1条辊涂线和1条淋涂线,辊涂/淋涂量约100g/min(6kg/h),UV辊涂底漆用量总计约18t/a,预计单台辊涂/淋涂机运行时间为1500h/a,考虑上料、下料、加油漆等时间,按照每天10h(年3000h)工作制安排符合生产要求。

相关管理部门可以通过企业油漆房运行台账、油漆购买记录、产品销售记录等对生产产能进行核查,以控制企业生产产能满足审批要求。

4.1.4 平面布局

各建筑功能布局见下表 4.1-12。

位置 功能 主要设备 原料仓库、辊涂线 辊涂线 1条、磨机 1F 1条、漆后打磨 推台锯、开料机、钻床、砂光机等 木工车间 2F 1#厂房 批灰、打磨、涂装 喷涂线 1 条、手工打磨工位等 3F 车间 淋涂线1条、喷涂线1条、自动包装 涂装车间、自动包 4F 装 线1条等 1F 木工车间 推台锯、开料机、钻床、砂光机等 推台锯、开料机、钻床、砂光机等 2F 木工车间 UV 辊涂线 1 条、喷涂线 1 条、手工打 批灰、打磨、涂装 2#厂房 3F 车间 磨工位等 涂装车间、自动包 淋涂线1条、喷涂线1条、自动包装 4F 线1条等 装 1F 食堂 / 综合楼 2~4F 办公 / 5~7F 宿舍 /

表 4.1-12 各建筑功能布局一览表

4.1.5 劳动安排

门卫

本项目迁建后劳动定员 400 人,实行单班制,日工作 10 小时,夜间不生产,全年工作 300 天,项目设食堂及员工宿舍。

/

门房

4.1.6 公用工程

1、供配电系统

项目用电由国网供电缙云分局供应。

1F

以 10KV 电网出线接入厂区变配电站,再以 380/220 出线接入各生产装置车间配电系统,为项目生产、生活提供用电。

2、给排水系统

①供水水源

项目生产、生活及消防用水由自来水管网供应,厂区进水管道 DN100,供水管路已敷设至厂区附近,水量、水压完全满足需要。

②消防给水系统

根据《建筑设计防火规范》(GB50016-2018)要求,本工程厂区内同时发生火灾次数为一次计,火灾延续时间为 2 小时,室外消防用水量为 15 升/秒,室内可不设消防给水系统。

本工程室外消防用水直接由园区自来水管网供给,管网的压力约为0.35MPa,能满足消防用水要求。并在厂区室外适当位置设置室外消火栓,室外消火栓的布置间距不超过120米。根据《建筑灭火器配置设计规范》(GB50140-2005),在每个车间内配置磷酸铵盐干粉灭火器。

③排水系统

采用雨水、污水分流,且生活污水与废水分流的原则,生活污水经化粪池/隔油池处理后纳入污水管道,生产废水经厂区污水处理站处理达标后通过管道输送至污水处理站处理后,送至缙云县第三污水处理厂进行处理。

屋面雨水就近排入厂区雨水管网,初期雨水排入初期雨水池,末端做阀门切换,后期清净雨水排入市政雨水管网。

4.1.7 项目工程组成

项目工程组成见表 4.1-13。

表 4.1-13 项目工程组成表

名称	工程组成	内容及规模		
		1F 布局有辊涂线 1 条、漆后打磨; 2F 布局有木工车间;		
	1#厂房	3F 布局有批灰、打磨、涂装车间;4F 布局有涂装车间、		
主体工程		自动包装;总建筑面积 21289.04m²		
土净工作		1F 布局有木工车间; 2F 布局有木工车间; 3F 布局有批灰、		
	2#厂房	打磨、涂装车间;4F布局有涂装车间、自动包装;总建筑		
		面积 20686.69m²		
	1#厂房	1F 布局有原料仓库、成品仓库,面积 3000m²		
配套工程	综合楼	食堂、办公、宿舍, 7F 建筑, 总建筑面积 7288.91m²		
	出入口	位于厂区东侧工业六路上。		
	给水	生产、生活用水由园区管网供水,由供水管路至厂房、综		
公用工程		合楼等使用。		
	供电	由园区供电线路网统一供给。		
		(1) 生产废水: 喷漆水帘机废水、水喷淋塔废水、批灰		
		打磨除尘水帘机废水分质分类收集后纳入厂区内污水处		
环保工程	废水处理设施	理设施处理,厂区内污水处理设施处理规模为50m³/d,采		
		取"芬顿氧化+混凝沉淀+气浮"的处理工艺,经处理达到达		
		到《污水综合排放标准》(GB8978-1996)中三级标准(其		

中氨氮、总磷排放参照《工业企业废水氮、磷污染物间接排放限值》(DB33/887-2013)中标准限值)后纳入市政污水管网进入缙云县第三污水处理厂处理。

- (2) 生活污水: 经化粪池、隔油池预处理达标后纳入园 区污水管网,由缙云县第三污水处理厂处理达标排放。
- (1) 有机废气: ①1#厂房油性漆调漆、喷漆和晾干废气一起收集最终进入一套"干式过滤棉+活性炭吸附+活性炭脱附催化燃烧"(TA001) 处理后由不低于 15m (DA001) 高排气筒排放。
- ②1#厂房水性漆调漆、喷漆、晾干废气一起收集最终进入两套"水帘机"(TA002、TA003)处理后由不低于 15m(DA002、DA003)高排气筒排放。③1#厂房辊涂机、淋涂机采用封闭式结构,除必要进出口外无其他开口,在辊涂机、淋涂机出口处设置集气罩,有机废气收集后最终进入一套"水喷淋塔"(TA004)处理后由不低于 15m(DA004)高排气筒排放。
- ④2#厂房油性漆调漆、喷漆和晾干废气一起收集最终进入一套"干式过滤棉+活性炭吸附+活性炭脱附催化燃烧" (TA005)处理后由不低于15m (DA005)高排气筒排放。⑤2#厂房水性漆调漆、喷漆、晾干废气一起收集最终进入两套"水帘机"(TA006、TA007)处理后由不低于15m (DA006、DA007)高排气筒排放。

废气处理设施

- ⑥2#厂房辊涂机、淋涂机采用封闭式结构,除必要进出口外无其他开口,在辊涂机、淋涂机出口处设置集气罩,有机废气收集后最终进入一套"水喷淋塔"(TA008)处理后由不低于15m(DA008)高排气筒排放。
- (2) 木工粉尘: ①针对木工粉尘本项目 1#厂房拟设置 2 套治理设施处理尾气由 2 根排气筒排放,即木工粉尘收集后经中央布袋除尘器(TA009、TA010)处理后经不低于15m 排气筒(DA009、DA010)高空排放。②针对木工粉尘本项目 2#厂房拟设置 2 套治理设施处理尾气由 2 根排气筒排放,即木工粉尘收集后经中央布袋除尘器(TA011、TA012)处理后经不低于 15m 排气筒(DA011、DA012)高空排放。
- (3) 批灰、打磨粉尘: ①针对批灰、打磨粉尘本项目 1# 厂房拟设置 2 套治理设施处理尾气由 2 根排气筒排放,即人工批灰、打磨由引风机收集后经水滤式除尘柜(TA013)处理后经不低于 15m 排气筒(DA013)高空排放。机器打磨由吸风管道收集后经布袋除尘器(TA014)处理后经不低于 15m 排气筒(DA014)高空排放。②针对批灰、打磨粉尘本项目 2#厂房拟设置 2 套治理设施处理尾气由 2 根排气筒排放,即人工批灰、打磨由引风机收集后经水滤式除尘柜(TA015)处理后经不低于 15m 排气筒(DA015)高空排放。机器打磨由吸风管道收集后经布袋除尘器

		(TA016)处理后经不低于 15m 排气筒(DA016)高空排
		放。
	噪声治理措施	生产设备运行噪声进行隔声、减振
		一般固废: 在厂区南侧建设一般固废堆场(占地面积约
	 固废治理措施	50m²), 分类收集进行综合利用或委托环卫部门清运;
	四次在生泪地	危险废物: 在厂区北侧建设危废暂存场(占地面积约
		72m ²),妥善贮存后委托有资质单位安全处置。
	 环境风险措施	配备应急物质,厂区内设置事故应急池(容积不小于
	グト・兄/へいか1日 JR	40m³),制定突发环境事件应急预案,日常加强应急演练。
	原料仓库	位于 1#厂房 1F,面积约 1500m²
储运工程	成品仓库	位于 1#厂房 31F,面积约 1500m²
	油漆仓库	位于厂区北侧空地,面积约为 100m ²

4.2 本项目影响因素分析

4.2.1 工艺流程及产污节点

1、全屋定制智能家具(包括衣柜、床头柜、电视柜、电脑桌、梳妆台、衣帽间等)生产工艺流程

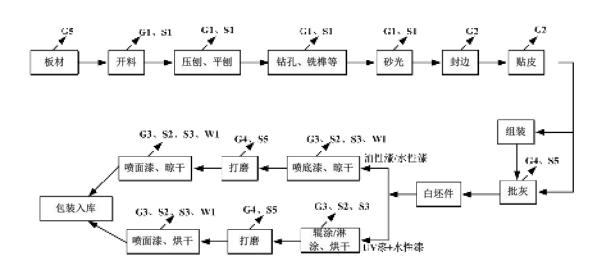


图 4.2.1 全屋定制智能家具生产工艺流程图

工艺流程说明:

- ①项目原材料为外购的板材(多层板和人造板),通过锯床开料成设计规格,然后对表面进行刨平;
- ②钻床、铣床等进行钻、铣等加工后部件通过砂光机去除毛刺,再经封边机进行封边,封边采用的是热熔胶(封边在封边机上完成,封边机自带电热源对热

熔胶加热熔融), 封边后进行产品组装:

③组装后部分产品需要贴皮处理,半成品在表面涂装前需要进行批灰,用调配好的腻子粉将部件接缝、钉眼等不平整位置批平整:

④项目上漆工艺分为3种:

第一种是采用喷枪进行空气喷涂,喷涂的为油性漆或者水性漆,喷涂两底一面,在喷漆房内进行,采用人工/自动化空气喷涂方式,喷涂后晾漆为自然晾干,在冬天温度较低或梅雨季节湿度较大时,采用电烤灯供热提高恒温房温度(底漆晾漆时间一般为24小时;面漆晾漆时间一般为12小时;晾漆主要在晾干房完成。

第二种和第三种是采用环保漆(UV 光固化底漆和水性面漆),UV 光固化漆在辊涂机或淋涂机内进行,配套光固化线,上完底漆后进入喷漆房进行水性面漆喷涂,采用人工/自动化空气喷涂方式,喷涂后晾漆主要为烘烤,采用电烤灯供热提高恒温房温度。

淋涂工艺是将涂料流淌过工件表面的涂装方法,一般适用于表面平整的工件。对淋涂工艺中滴落涂料设置回收槽收集,涂装作业结束将剩余的所有涂料及含 VOCs 的辅料送回储存间。

報涂是以转辊作涂料的载体,涂料在转辊表面形成一定厚度的湿膜,然后借助转辊在转动过程中与被涂物接触,将涂料涂敷在被涂物的表面。辊涂适用于平面状的被涂物。

上述上漆工序中底漆和面漆中间需进行漆面打磨一次,为人工打磨,在专门设置的打磨区操作。底漆喷涂后部分产品上漆不理想、不均匀的需要进行人工修色处理,即人工手持喷枪进行喷漆。

⑤上漆后产品经检验合格即可包装入库。

2、木饰面生产工艺流程

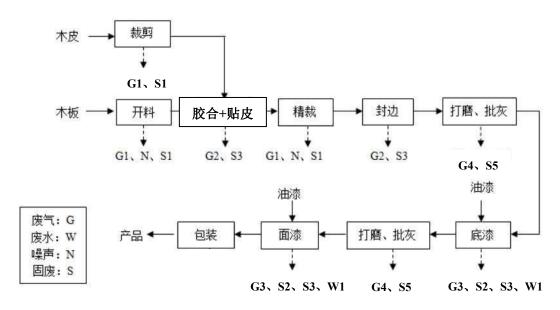


图 4.2.2 木饰面生产工艺流程图

工艺流程说明:

开料:按照用户要求的规格,用切割机对原料板材(多层板、免漆板)进行切割,然后用压刨机进行定长、定宽、定厚加工。

裁剪:将外购的木皮通过裁皮机裁剪成指定大小,部分加工成封边条。

胶合+贴皮: 多块板材表面分别涂刷水性胶粘剂,通过冷压机/热压机进行胶合,再使用水性胶粘剂进行贴皮,将木皮粘连在板材上。

精裁: 用推台锯对工件进行精裁, 去处周边多余的木皮。

封边:将板材、封边条通过封边机使用热熔胶进行封边。

打磨、批灰:用砂光机对木板表面进行打磨,同时用腻子粉修补表面瑕疵、 缝隙,增加表面光滑平整度。

本项目木饰面上漆工艺分为 3 种:喷枪空气喷涂、辊涂和淋涂,具体情况见上文全屋定制智能家具生产工艺流程说明。

打磨、批灰: 待底漆干后,用砂纸轻磨。若表面不平整,需用原子灰修补, 然后返回底漆工序再次喷涂,晾干后需再次用砂纸轻磨。

包装:木饰面检验合格后包装入库。

3、木门生产工艺流程

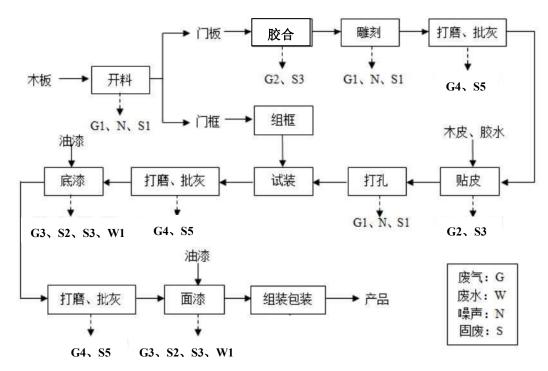


图 4.2.3 木门生产工艺流程图

工艺流程说明

开料:按照用户要求的规格,用切割机对原料板材进行切割,然后用压刨机 进行定长、定宽、定厚加工,制成门框、门板所需大小。

胶合:将不同的木板通过水性胶粘剂冷压/热压成门板。

雕刻: 用雕刻机在门板上雕刻图案和线条。

打磨、批灰:用砂光机对木板表面进行打磨,同时用原子灰修补表面瑕疵、 缝隙,增加表面光滑平整度。

贴皮: 在木板和裁剪后的木皮上刷涂水性胶粘剂,用刮板顺木板纹路刮平。

打孔、试装:在门板门锁位置打孔,将门板、门框以及门锁、把手等零件试 验组装,不合格返回开料、打磨工序。

打磨、批灰:用砂纸对木板表面进行打磨,同时用原子灰修补表面瑕疵、缝隙,增加表面光滑平整度。

本项目木饰面上漆工艺分为 3 种:喷枪空气喷涂、辊涂和淋涂,具体情况见上文全屋定制智能家具生产工艺流程说明。

待底漆干后,返回打磨、批灰工序,用砂纸轻磨。若表面不平整,需用腻子 粉修补,然后返回底漆工序再次喷涂,晾干后需再次用砂纸轻磨。 组装包装:将门板、门框以及门锁、把手等零件正式组装,包装入库。

设备、工艺先进性分析:

(1) 原料利用

本项目涂装工序使用的环境友好型涂料(水性漆或环保型涂料)为 109.92t/a, 溶剂型涂料为 27.8t/a, 环境友好型涂料约占涂料总使用量的 80%, 可有效从源头减少 VOCs 的产生量。

(2) 设备先进性分析

项目选用的设备中有较多的自动化设备,相比手动设备可提高原材料的使用效率和产品的精度,减少粉尘的产生;项目喷漆房、辊涂机、淋涂机采用封闭式结构,利用风机抽风形成微负压,减少有机废气无组织排放;迁建前项目有机废气处理设施采用缓冲精密过滤箱+水喷淋+UV光解+活性炭吸附设施处理,迁建后油性漆有机废气处理设施采用活性炭吸附+活性炭脱附催化燃烧处理,保证处理效率的同时减少废气处理过程二次污染。因此,项目采用的设备具有一定的先进性。

(3) 生产工艺

根据建设单位提供的工艺分析,项目采用的工艺为木制家具生产主流工艺,上漆方式为辊涂、淋涂和自动/人工空气喷涂,自动/人工空气喷涂相较于无空气喷涂较为落后,且上漆率不高,对涂料的消耗量较大,因此,项目生产工艺先进性一般。建议建设单位采用先进的无空气喷涂工艺。

迁建后企业总产能增加,上漆工艺中使用油性漆、水性漆、UV 辊涂底漆等涂料用量增加,但环境友好型涂料使用量占比高达 80%,因此,该部分工艺较传统全部使用溶剂型油漆喷涂工艺较先进。

4.2.2 污染影响因素分析

根据上述工艺流程及产物节点分析,本项目营运过程中主要污染因素见下表4.2-1。

类别	污染源	主要污染因子		
	木工粉尘(G1)	颗粒物		
废气	胶水使用产生的有机废气(G2)	非甲烷总烃		
	上漆 (G3)	颗粒物、苯系物、乙酸酯类、TVOC、非甲烷总		

表 4.2-1 项目生产污染工序及污染因子汇总

		烃				
	打磨、批灰粉尘(G4)	颗粒物				
	外购板材存储废气(G5)	甲醛				
	食堂油烟(G6)	油烟				
废水	水帘机、喷淋塔喷淋废水(W1)	COD _{Cr} 、氨氮、SS				
及小	生活污水(W2)	COD _{Cr} 、氨氮				
噪声	生产过程(N)	等效声级(dB)				
	边角料、木质粉尘(S1)	木工过程、除尘				
	漆渣(S2)	喷漆				
	废包装桶(S3)	油漆、胶粘剂等的使用				
	废砂纸(S4)	打磨				
	收集的打磨、批灰粉尘(S5)	打磨、批灰				
固废	废包装材料(S6)	包装、原材料使用				
四次	污泥(S7)	废水处理				
	废活性炭(S8)	废气处理				
	废过滤棉(S9)	废气处理				
	废催化剂(S10)	废气处理				
	废布袋(S11)	布袋除尘				
	生活垃圾(S12)	职工生活				

4.2.3 平衡分析

1、物料平衡

根据建设单位提供的资料及工艺分析,项目生产过程中物料衡算见表 4.2-2。

产出 投入 数量(t/a) 名称 名称 数量 (t/a) 多层板 产品 4000 8454.417 人造板 排入大气 (颗粒物) 4000 11.57 排入大气(有机废气) 木皮 500 3.095 涂料 137.72 被处理设施处理(有机废气) 9.728 包装材料 10 边角料、木质粉尘 121.32 封边条 6 漆渣 34.74 腻子粉 3 收集的打磨、批灰粉尘 19.9 砂纸 2 污泥 2.55 / / 废砂纸 1.4 合计 8658.72 合计 8658.72

表 4.2-2 物料平衡表

2、VOC 平衡

本项目 VOC 平衡分析如下:

表 4.2-3 VOC 平衡一览表

投	λ	产出				
涂料中挥发组分	12.826t/a	有机废气治理量	9.728			
体科中拜 及组为	12.8200/a	外排环境量	3.098			
合计	合计 12.826t/a		12.826t/a			

3、水平衡分析

项目水平衡见下图 3.3.2。

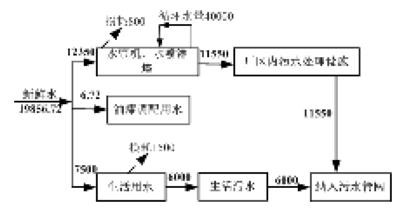


图 4.2.4 项目水平衡 (单位: m³/a)

4.3 本项目污染源源强核算

4.3.1 施工期污染源强分析

本项目位于缙云县新建 01-M2-01-2 地块(缙云县新建镇笕川村),拟新建 1#厂房、2#厂房和综合楼,地块总用地面积 23114.7m²,总建筑面积 50147.46m²,拟于该新建厂房内实施迁(扩)建项目。

施工期主要污染因子有工地扬尘、施工废水、生活污水、建筑垃圾、生活垃圾、施工噪声及生态影响等。

- (1) 废水: 废水包括施工废水和施工人员产生的生活污水。
- (2)噪声:噪声污染是建设期间最主要的污染因子,建设期间的噪声有各种施工机械噪声和运输车辆噪声。噪声的污染程度与所使用的施工设备的种类及施工队伍的管理等因素有关。
- (3) 废气:建设期的空气污染物主要为施工引起的扬尘,包括各种建筑材料在运输和使用过程中产生的扬尘以及运输车辆产生的道路扬尘等、施工机械尾气等。
- (4) 固体废物:主要施工过程中产生的建筑垃圾以及施工人员产生的生活垃圾。

1、施工期水污染源强分析

项目建设期施工废水包括施工期混凝土废水、泄漏的工程用水以及混凝土保养时排放的废水。混凝土废水、工程泄漏水及保养废水随工程进度不同产生量也不同,同时与操作人员的经验、素质等因素有关,总量较难估算,要求施工期施工废水经沉淀池沉淀后回用与施工现场洒水。

现场施工人员产生的生活废水是建设期的主要废水,施工高峰期日施工人员按 50 人计,生活用水量按 50L/人 · d 计,废水产生量按用水量的 80%计,则项目施工期间施工人员生活废水产生量为 2t/d。施工人员日常生活排放的生活废水,若处置不当,会对附近的水体造成污染,故应管理好施工人员生活污水的排放,项目施工场地设集中生活设施,施工人员如厕于临时集中生活设施解决,废水经污水处理设施处理达标后纳管排放。

2、施工期大气污染源强分析

①粉尘

施工材料装卸和运输,混凝土水泥砂浆的配制等施工过程都会产生大量的粉尘,施工场地道路与砂石堆场遇风亦会产生扬尘,因此对周围大气环境产生影响,主要污染因子为 TSP。据调查,施工作业场地近地面粉尘浓度可达 1.5-30mg/Nm³。

据有关调查显示,施工工地的扬尘主要是由运输车辆的行驶产生,约占扬尘总量的60%,并与道路路面及车辆行驶速度有关。车辆行驶产生的扬尘,在完全干燥情况下,可按下列经验公式计算:

 $Q=0.123(V/5)(W/6.8)^{0.85}(P/0.5)^{0.75}$

式中: Q——汽车行驶的扬尘, kg/km·辆;

V——汽车速度, km/hr:

W——汽车载重量, t;

P——道路表面粉尘量, kg/m²;

下表为一辆 10t 卡车,通过一段长度为 1km 的路面时,不同路面清洁程度、不同行驶速度情况下的扬尘量。由此可见,在同样路面清洁程度条件下,车速越快,扬尘量越大;而在同样车速情况下,路面越脏,则扬尘量越大。因此限制车辆行驶速度及保持路面的清洁是减少汽车扬尘的最有效手段。

粉尘量 0.1 0.2 0.3 0.4 0.5 1.0 车速 (kg/m^2) (kg/m^2) (kg/m^2) (kg/m^2) (kg/m^2) (kg/m^2) 5(km/h) 0.0511 0.0859 0.1164 0.1444 0.1707 0.2871 10(km/h)0.1021 0.1717 0.2328 0.2888 0.3414 0.5742 15(km/h)0.1532 0.2576 0.3491 0.4332 0.5121 0.8613 25(km/h) 0.2553 0.4293 0.5819 0.7220 0.8536 1.4355

表 4.3-1 不同路面清洁程度、不同行驶速度情况下的扬尘量统计表

②堆场扬尘

施工阶段扬尘的一个主要来源是露天堆场和裸露场地的风力扬尘。由于施工需要,一些建筑材料需要露天堆放,一些施工作业点的表层土壤在经过人工开挖后,临时堆放于露天,在气候干燥且有风的情况下,会产生大量的扬尘,扬尘量可按堆场扬尘的经验公式计算:

$$Q=2.1 (V_{10}-V_0)^{-3}e^{-1.023W}$$

式中: *O*—起尘量, kg/t·a;

V50—距地面 50m 处风速, m/s;

 V_0 —起尘风速, m/s;

W—尘粒的含水量,%。

起尘风速与粒径和含水量有关,因此,减少露天堆放和保证一定的含水量及减少裸露地面是减少风力起尘的有效手段。粉尘在空气中的扩散稀释与风速等气象条件有关,也与粉尘本身的沉降速度有关。不同粒径粉尘的沉降速度见表4.3-2。

粉尘粒径(μm)	10	20	30	40	50	60	70
沉降速度(m/s)	0.003	0.012	0.027	0.048	0.075	0.108	0.147
粉尘粒径(μm)	80	90	100	150	200	250	350
沉降速度(m/s	0.158	0.170	0.182	0.239	0.804	1.005	1.829
粉尘粒径(μm)	450	550	650	750	850	950	1050
沉降速度(m/s)	2.211	2.614	3.016	3.418	3.820	4.222	4.624

表 4.3-2 不同粒径尘粒的沉降速度

③汽车尾气

汽车尾气主要来自于施工机械和交通运输车辆,排放的主要污染物为 NO₂、CO 和 NMHC 等。机动车辆污染物排放系数见表 4.3-3。

污染物	汽油为燃料(g/L)	轻柴油为燃料(g/L)			
17条初	小汽车	载重车	机车		
CO	169.0	270	8.4		
NO ₂	21.1	44.4	9.0		
NMHC	33.1	4.44	6.0		

表 4.3-3 机动车辆污染源排放系数

以黄河重型车为例,其额定燃油量为 30.19L/100km,按表 3.3-3 机动车辆污染物排放系数测算,单车污染物平均排放量分别为: CO815.13g/100km,NO₂ 1340.44g/100km,NMHC134.0g/100km。

④油漆废气

油漆废气主要来自于装修阶段,油漆废气的排放属无组织排放。由于审美观、财力等因素的不同,装修时的油漆耗量和油漆品牌也不相同。同时,油漆的成分比较复杂,随不同的种类和厂家而不同。油漆涂覆产生的废气中主要污染因子为二甲苯和甲苯,此外还有溶剂汽油、丁醇、丙酮等,其排放量较难估算,本环评不作定量分析。

3、施工期噪声污染源强分析

施工噪声贯穿于施工的全过程,本工程建设过程中的噪声主要来自挖掘机、

装卸车辆、混泥土振捣器等施工设备的机械运行噪声,主要机械设备噪声源强见表 4.3-4。

序号	施工机械	测量声级[dB(A)]	测量距离(m)
1	挖掘机	70	10
2	自卸汽车	70	10
3	水泵	80	10
4	混凝土振捣器	85	10
5	混凝土搅拌车	75	10

表 4.3-4 主要施工机械设备的噪声声级

4、施工期固体废弃物源强分析

项目施工期间产生的固体废弃物主要为建设过程中产生的建筑垃圾及施工人员生活垃圾等。建筑垃圾随工程进度不同产生量也不同,同时与操作人员的经验、素质等因素有关,建筑垃圾产生量按 50kg/m² 的单位建筑垃圾产生量较难估算,本环评不作定量分析;生活垃圾按人均每天 1 公斤计算,生活垃圾产生量为50kg/d。

4.3.2 营运期污染源强分析

4.3.2.1 营运期大气污染源强分析

根据项目工艺分析,项目营运过程中产生的废气主要为上漆和胶粘剂使用产生的有机废气,工艺粉尘,以及原材料板材存储散发的少量甲醛,食堂油烟。

1、有机废气

项目有机废气主要来自调漆、上漆、晾干等过程,此外,项目在胶合、封边、贴皮等过程胶水使用过程中会产生少量的有机废气(胶水中游离化学物质释放)。

根据对水性胶粘剂、热熔胶成分及理化特性分析,其使用过程中挥发的有机废气量极少,因此,该部分工序产生的有机废气量极少,通过加强车间通风,不会对周围环境造成明显影响,本环评报告不进行量化分析,本次环评重点分析上漆工序过程有机废气产排情况。

根据建设单位车间布局设计,**1**#**厂房和 2**#**厂房涂装车间和喷枪等设置情况相同,涂装使用的涂料用量基本相同**,具体情况为:

4个底漆房(1个油性、3个水性)、6个面漆房(1个油性、5个水性)、10个晾干房、3个调漆间,3个修色房(1个油性、2个水性),共配置20把喷枪,其中13把喷枪为每个喷漆房和修色房配置生产使用,另外7把为备用喷枪。

喷枪喷漆量约 60g/min(3.6kg/h)。项目每栋生产厂房各设 1 条辊涂线和 1 条淋涂线, 辊涂/淋涂量约 100g/min(6kg/h)。

(1) 产生量计算

根据原材料 MSDS 报告和检测报告,本项目使用的涂料和胶粘剂中挥发性物质的含量如下表所示:

油漆中挥发份 年用量 项目 种类 调配比例 百分比 成分 (t/a)含量 (t/a) (%) 底漆 醋酸丁酯 0.435 8.7 5 丙二醇甲醚醋酸 50 1.75 喷底漆 酯 (溶剂 稀释剂 3.5 8.7:3.5:2 醋酸丁酯 15 0.525 型涂 二甲苯 35 1.225 料) 固化剂 醋酸丁酯 34.5 2.0 0.69 合计 14.2 / / 4.625 面漆 8.5 醋酸丁酯 7 0.595 丙二醇甲醚醋酸 喷面漆 50 1.65 酯 (溶剂 稀释剂 8.5:3.3:1.8 3.3 0.495 醋酸丁酯 15 型涂 二甲苯 35 1.155 料) 固化剂 1.8 醋酸丁酯 34.5 0.621 合计 13.6 / / / 4.516 底漆 34.8 喷底漆 固化剂 3.48 100:10:10 二丙二醇丁醚 2.8 1.169 (水性 水 3.48 涂料) 合计 41.76 2.8 1.169 / / 面漆 32.4 喷面漆 固化剂 100:10:10 二丙二醇丁醚 3.24 3.6 1.4 (水性 水 3.24 涂料) 合计 / / 3.6 1.4 38.88 直接使用,无 UV 辊涂底漆 36 非甲烷总烃 1.116 3.1 需调配 合计: 乙酸酯类 3.361t/a、二甲苯 2.38t/a、非甲烷总烃 12.826t/a、TVOC12.826t/a。

表 4.3-5 涂料挥发份情况一览表

本项目调漆过程在喷漆房进行,项目调漆时间短,挥发性有机废气产生量少,不单独定量计算;未用完油漆暂存于喷漆室,暂存过程挥发的少量有机废气经风机收集后进入废气治理设施处理。本项目采用 3 种上漆工艺,喷枪空气喷涂、辊涂和淋涂,均需用到油性漆、水性漆和 UV 辊涂底漆。

喷涂后晾漆为自然晾干, 在冬天温度较低或梅雨季节湿度较大时, 采用电烤

灯供热提高恒温房温度(底漆晾漆时间一般为24小时;面漆晾漆时间一般为12小时;晾漆主要在晾干房完成。

上漆过程中附着在工件上的挥发性有机物在喷漆、晾干过程中的挥发比例分别为 30%、70%。喷枪空气喷涂的上漆率约在 50%左右,辊涂和淋涂的上漆率约为 95%,其余未利用部分形成漆雾均进入水帘。

(2) 收集措施、治理措施及排放量

1#厂房和 2#厂房涂装车间产生的有机废气拟分别进行收集和治理,另外水 性漆和油性漆产生的废气分别进行收集和处理。

1#厂房的废气收集、治理设施如下:

- ①1#厂房油性漆调漆、喷漆和晾干均在密闭的房间内进行,除必要进出口外 无其他开口,运行时处于密闭状态,运行空间保持微负压状态,通过送风机和抽 风机进行换气,各喷漆房均配置有1个水帘喷漆台去除漆雾后,喷漆废气汇同调 漆、晾干废气一起收集最终进入一套"干式过滤棉+活性炭吸附+活性炭脱附催化 燃烧"(TA001)处理后由不低于15m(DA001)高排气筒排放。TA001配套的 总风机风量约为20000m³/h。
- ②1#厂房水性漆调漆、喷漆、晾干均在密闭的房间内进行,除必要进出口外 无其他开口,运行时处于密闭状态,运行空间保持微负压状态,通过送风机和抽 风机进行换气。喷漆废气、调漆、晾干废气一起收集最终进入两套"水帘机" (TA002、TA003)处理后由不低于 15m (DA002、DA003)高排气筒排放。TA002 和 TA003 配套的总风机风量分别约为 20000m³/h。
- ③1#厂房辊涂机、淋涂机采用封闭式结构,除必要进出口外无其他开口,在辊涂机、淋涂机出口处设置集气罩,有机废气收集后最终进入一套"水喷淋塔"(TA004)处理后由不低于 15m(DA004)高排气筒排放。TA004 配套的总风机风量约为 10000m³/h。

2#厂房的废气收集、治理设施如下:

①2#厂房油性漆调漆、喷漆和晾干均在密闭的房间内进行,除必要进出口外 无其他开口,运行时处于密闭状态,运行空间保持微负压状态,通过送风机和抽 风机进行换气,各喷漆房均配置有1个水帘喷漆台去除漆雾后,喷漆废气汇同调 漆、晾干废气一起收集最终进入一套"干式过滤棉+活性炭吸附+活性炭脱附催化 燃烧"(TA005) 处理后由不低于 15m (DA005) 高排气筒排放。TA005 配套的 总风机风量约为 20000m³/h。

②2#厂房水性漆调漆、喷漆、晾干均在密闭的房间内进行,除必要进出口外 无其他开口,运行时处于密闭状态,运行空间保持微负压状态,通过送风机和抽 风机进行换气。喷漆废气、调漆、晾干废气一起收集最终进入两套"水帘机" (TA006、TA007)处理后由不低于 15m (DA006、DA007)高排气筒排放。TA006 和 TA007 配套的总风机风量分别约为 20000m³/h。

③2#厂房辊涂机、淋涂机采用封闭式结构,除必要进出口外无其他开口,在辊涂机、淋涂机出口处设置集气罩,有机废气收集后最终进入一套"水喷淋塔" (TA008) 处理后由不低于 15m (DA008) 高排气筒排放。TA008 配套的总风机风量约为 10000m³/h。

由于喷漆房和晾干房均为连续作业,运行时间约为 3000h/a,本次环评按照各废气产生量除以连续工作运行时间计算废气的产生速率,则各有机废气产生单元的产生情况见下表所示:

表 4.3-6 各有机废气产生单元产生情况一览表

产生位	丁 🖨	对应治理	》: >h .Hm . 与 .红.	文集見(4)	文件本本(1 /1)	生产使用时	配套喷涂设备		
置	工序	设施	污染物名称	产生量(t/a)	产生速率(kg/h)	数量	喷涂量		
			颗粒物	4.578	1.526				
	油性漆		醋酸丁酯	1.6805	0.56				
	喷涂	TA001	二甲苯	1.19	0.397	喷枪 2 把	60g/min(3.6kg/h)/把		
			非甲烷总烃	4.5705	1.524				
			TVOC	4.5705	1.524				
	业业冰	TA002	颗粒物	7.458	2.486				
1#厂房	水性漆 喷涂1		非甲烷总烃	0.642	0.214	喷枪 4 把	60g/min(3.6kg/h)/把		
,	製体 1		TVOC	0.642	0.214				
	业业冰	性漆 涂 2 TA003	颗粒物	7.458	2.486				
			非甲烷总烃	0.642	0.214	喷枪 4 把	60g/min(3.6kg/h)/把		
	□ 顺休 2		TVOC	0.642	0.214				
	辊涂、淋	t =	非甲烷总烃	0.558	0.186	1 2 41 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/	100 / : / (1 / 1) / 7 / 4		
	涂	TA004	TVOC	0.558	0.186	1 条辊涂线+1 条淋涂线	100g/min(6kg/h)/条线		
			颗粒物	4.578	1.526				
	油料冻		醋酸丁酯	1.6805	0.56				
	油性漆	TA005	二甲苯	1.19	0.397	喷枪 2 把	60g/min(3.6kg/h)/把		
2世皇	喷涂		非甲烷总烃	4.5705	1.524				
2#厂房			TVOC	4.5705	1.524				
	业业		颗粒物	7.458	2.486				
	水性漆 磨涂 1	TA006	非甲烷总烃	0.642	0.214	喷枪 4 把	60g/min(3.6kg/h)/把		
	喷涂1		TVOC	0.642	0.214				

	水性漆 喷涂 2		颗粒物	7.458	2.486			
		TA007	非甲烷总烃	0.642	0.214	喷枪 4 把	60g/min(3.6kg/h)/把	
			TVOC	0.642	0.214			
	辊涂、淋	TA000	非甲烷总烃	0.558	0.186	1 夕相沙州 1 夕 壮沙州	100g/min(6kg/h)/条线	
	涂 TA008	1A008	TVOC	0.558	0.186	1 条辊涂线+1 条淋涂线		

根据《浙江省重点行业 VOCs 污染排放源排放量计算方法 (1.1 版)》, VOCs 收集效率见表 4.3-7。

收集方式	收集效率%	达到上限效率必须满足的条件,否则按下限计					
		设备有固定排放管(或口)直接与风管连接,设备整					
设备废气排口直连	80~95	体密闭只留产品进出口,且进出口处有废气收集措施,					
		收集系统运行时周边基本无VOCs散发。					
车间或密闭间进行		屋面现浇,四周墙壁或门窗等密闭性好。收集总风量					
密闭收集	80~95	能确保开口处保持微负压(敞开截面处的吸入风速不					
五内収来		小于0.5m/s),不让废气外泄。					
半密闭罩或通风橱		污染物产生点(面)处,往吸入口方向的控制风速不					
方式收集(罩内或	65~85	小于某一数值(喷漆不小于0.75m/s,其余不小于					
橱内操作)		0.5m/s)					
热态上吸风罩	30~60	污染物产生点(面)处,往吸入口方向的控制风速不					
然心上火八早	30~00	小于0.5m/s。热态指污染源散发气体温度≥60℃。					
 冷态上吸风罩	20~50	污染物产生点(面)处,往吸入口方向的控制风速不					
7亿工火八早	20~30	小于0.25m/s。冷态指污染源散发气体温度<60℃。					
		污染物产生点(面)处,往吸入口方向的控制风速不					
侧吸风罩	20~40	小于0.5m/s, 且吸风罩离污染源远端的距离不大于					
		0.6m°					

表 4.3-7 VOCs 认定收集效率表

根据上表,项目涂装废气采用密闭结构进行收集,收集效率按90%计算。根据《吸附法工业有机废气治理工程技术规范》(HJ2026-2013),吸附装置的净化效率不得低于90%,项目油性漆涂装有机废气采用吸附浓缩-催化燃烧法,去除效率按90%计算;本项目水性漆调漆、喷漆、晾干有机废气收集最终进入"水帘机"处理,辊涂、淋涂有机废气进入"水喷淋塔"处理,根据《浙江省重点行业 VOCs 污染排放源排放量计算方法(1.1 版)》喷淋法净化效率为10~70%,水帘机和水喷淋塔废水每日更换一次,喷淋法净化效率可达70%,本次环评取值70%。

漆雾(颗粒物)经水帘机、干式过滤(过滤棉)处理后去除效率约为 90%。 本项目有机废气排放情况如下下表 4.3-8。

表 4.3-8 各有机废气排放情况一览表

		对应治	对应排	配套风	污染物	立上具	产生速率		有组织		无约	且织
产生位置	工序	理设施	利	机风量	名称	产生量 (t/a)	厂生速率 (kg/h)	排放量	排放速率	排放浓度	排放量	排放速率
		全权旭	V 1-3	(m^3/h)	11/1/1	(va)	(Kg/II)	(t/a)	(kg/h)	(mg/m^3)	(t/a)	(kg/h)
					颗粒物	4.578	1.526	0.412	0.137	6.9	0.458	0.153
油性漆涂	油炉流鸭				醋酸丁 酯	1.6805	0.56	0.151	0.050	2.5	0.168	0.056
		TA001	DA001	20000	二甲苯	1.19	0.397	0.107	0.036	2	0.119	0.04
	125				非甲烷 总烃	4.5705	1.524	0.411	0.137	6.9	0.457	0.152
					TVOC	4.5705	1.524	0.411	0.137	6.9	0.457	0.152
	水性漆喷 涂 1	TA002	DA002	20000	颗粒物	7.458	2.486	0.671	0.224	11.2	0.746	0.249
1#厂房					非甲烷 总烃	0.642	0.214	0.173	0.058	2.9	0.064	0.021
					TVOC	0.642	0.214	0.173	0.058	2.9	0.064	0.021
			DA003	20000	颗粒物	7.458	2.486	0.671	0.224	11.2	0.746	0.249
	水性漆喷涂2	TA003			非甲烷 总烃	0.642	0.214	0.173	0.058	2.9	0.064	0.021
					TVOC	0.642	0.214	0.173	0.058	2.9	0.064	0.021
	報涂、淋 涂	TA004	004 DA004	10000	非甲烷 总烃	0.558	0.186	0.151	0.05	5	0.056	0.019
					TVOC	0.558	0.186	0.151	0.05	5	0.056	0.019
	油性漆喷				颗粒物	4.578	1.526	0.412	0.137	6.9	0.458	0.153
2#厂房	涂	TA005	DA005	20000	醋酸丁 酯	1.6805	0.56	0.151	0.050	2.5	0.168	0.056

				二甲苯	1.19	0.397	0.107	0.036	2	0.119	0.04
				非甲烷 总烃	4.5705	1.524	0.411	0.137	6.9	0.457	0.152
				TVOC	4.5705	1.524	0.411	0.137	6.9	0.457	0.152
				颗粒物	7.458	2.486	0.671	0.224	11.2	0.746	0.249
水性漆喷 涂 1	TA006	DA006	20000	非甲烷 总烃	0.642	0.214	0.173	0.058	2.9	0.064	0.021
				TVOC	0.642	0.214	0.173	0.058	2.9	0.064	0.021
		DA007	20000	颗粒物	7.458	2.486	0.671	0.224	11.2	0.746	0.249
水性漆喷 涂 2	TA007			非甲烷 总烃	0.642	0.214	0.173	0.058	2.9	0.064	0.021
				TVOC	0.642	0.214	0.173	0.058	2.9	0.064	0.021
報涂、淋 涂	TA008	08 DA008	10000	非甲烷 总烃	0.558	0.186	0.151	0.05	5	0.056	0.019
				TVOC	0.558	0.186	0.151	0.05	5	0.056	0.019

由上表可知,项目各有机废气经处理后,各污染物排放浓度均能达到《工业涂装工序大气污染物排放标准》(DB33/2146-2018)中新建污染源排放限值(苯系物≤40mg/m³,乙酸酯类≤60mg/m³,颗粒物≤30mg/m³,非甲烷总烃 ≤80mg/m³,TVOC ≤150mg/m³)。

2、工艺粉尘

项目营运期产生的工艺粉尘主要为木工粉尘,批灰、打磨粉尘。

(1) 木工粉尘

企业在生产过程中木料在开料、刨、铣、钻、砂光、精裁、雕刻等过程会产生木屑粉尘,为了解项目生产过程木工粉尘产生环节及产生情况,木工粉尘产污系数参照《排放源统计调查产排污核算方法和系数手册》中211木质家具制造行业系数手册中的产污系数,具体如下:

产品名称	原料名称	工艺名称	规模等 级	污染物 指标	系数单 位	产污系数	末端治 理技术 名称	去处效 率(%)
实木家 具、人 造板家 具	实木、 人造板	机加工	所有规 模	颗粒物	克/立方 米-原料	150	袋式除 尘	90%

表 4.3-9 木工粉尘产污系数一览表

本次项目使用多层板 10 万张/a、人造板 10 万张/a, 每张板材规格为 1.22m×2.44m, 厚度约为 18mm,则原料总用量为 10927m³,则粉尘产生量约为 1.639t/a。

通过在产尘设备设置集气设施,集气效率约60%计算。针对木工粉尘本项目1#厂房拟设置2套治理设施处理尾气由2根排气筒排放,即木工粉尘收集后经中央布袋除尘器(TA009、TA010)处理后经不低于15m排气筒(DA009、DA010)高空排放,单套除尘器配套风机风量为5000m³/h,每年生产时间为3000h,除尘效率按90%计算。

针对木工粉尘本项目 2#厂房拟设置 2 套治理设施处理尾气由 2 根排气筒排放,即木工粉尘收集后经中央布袋除尘器 (TA011、TA012) 处理后经不低于 15m 排气筒 (DA011、DA012) 高空排放,单套除尘器配套风机风量为 5000m³/h,每年生产时间为 3000h,除尘效率按 90%计算。

根据《环保工作者实用手册》(第2版),悬浮颗粒物粒径范围在1~200µm

之间,大于 100μm 的颗粒物会很快沉降,在车间内粉尘沉降率按 80%计算。木工粉尘产排情况见表 4.3-10。

表 4.3-10 木工粉尘排放情况一览表

产生位		 対应治	 対応治 対応排	配套风	污染物	产生量		有组织			无组织	
置置	工序	理设施	气筒	机风量	名称	(t/a)	排放量	排放速率	排放浓度	排放量	排放速率	
<u> </u>	11.000	41.3	(m^3/h)	2H 1/41	() ()	(t/a)	(kg/h)	(mg/m^3)	(t/a)	(kg/h)		
1#厂房	木工1	TA009	DA009	5000	颗粒物	0.4098	0.025	0.008	1.639	0.033	0.011	
1#) /万	木工 2	TA010	DA010	5000	颗粒物	0.4098	0.025	0.008	1.639	0.033	0.011	
2#广良	木工1	TA011	DA011	5000	颗粒物	0.4098	0.025	0.008	1.639	0.033	0.011	
2#厂房 —	木工 2	TA012	DA012	5000	颗粒物	0.4098	0.025	0.008	1.639	0.033	0.011	

由上表可知,本项目木工粉尘能达到《大气污染物综合排放标准》 (GB16297-1996)表2中二级排放标准限值要求(颗粒物≤120mg/m³,颗粒物≤3.5kg/h)。

(2) 批灰、打磨粉尘

工件喷漆前和喷完底漆晾干后需进行人工/机器打磨、批灰处理,主要成分为腻子粉和油漆固化后的树脂。为了解项目生产过程批灰、打磨粉尘产生环节及产生情况,批灰、打磨粉尘产污系数参照《排放源统计调查产排污核算方法和系数手册》中211木质家具制造行业系数手册中的产污系数,具体如下:

产品名称	原料名称	工艺名称	规模等 级	污染物 指标	系数单 位	产污系数	末端治 理技术 名称	去处效 率(%)
实木家 具、人 造板家 具	实木、 人造 板、涂 料、胶 粘剂	表面光滑处理	所有规 模	颗粒物	克/平方 米-产品	23.5	水喷淋	80%

表 4.3-11 批灰、打磨粉尘产污系数一览表

本项目需批灰、打磨的产品约为 1013932 万 m²,则批灰、打磨粉尘产生量约为 23.83t/a。

本项目设置独立的批灰、打磨工作区域,通过在产尘区域设置集气设施,集 气效率约70%计算。

针对批灰、打磨粉尘本项目 1#厂房拟设置 2 套治理设施处理尾气由 2 根排气筒排放,即人工批灰、打磨由引风机收集后经水滤式除尘柜(TA013)处理后经不低于 15m 排气筒(DA013)高空排放,除尘器总风机风量为 10000m³/h,每年生产时间为 3000h;机器打磨由吸风管道收集后经布袋除尘器(TA014)处理后经不低于 15m 排气筒(DA014)高空排放,除尘器总风机风量为 5000m³/h,每年生产时间为 3000h。

针对批灰、打磨粉尘本项目 2#厂房拟设置 2 套治理设施处理尾气由 2 根排气筒排放,即人工批灰、打磨由引风机收集后经水滤式除尘柜(TA015)处理后经不低于 15m 排气筒(DA015)高空排放,除尘器总风机风量为 10000m³/h,每年生产时间为 3000h;机器打磨由吸风管道收集后经布袋除尘器(TA016)处理后经不低于 15m 排气筒(DA016)高空排放,除尘器总风机风量为 5000m³/h,

每年生产时间为 3000h。

布袋除尘效率按 90%计算,水滤式除尘柜除尘效率按 80%计算。根据《环保工作者实用手册》(第 2 版),悬浮颗粒物粒径范围在 1~200μm 之间,大于100μm 的颗粒物会很快沉降,在车间内粉尘沉降率按 80%计算。批灰、打磨粉尘产排情况见表 4.3-12。

表 4.3-12 批灰、打磨粉尘排放情况一览表

产生位		对应治理	对应排气	配套风机	污染物名	产生量		有组织		无约	且织
置	工序	设施	筒	风量	称	(t/a)	排放量	排放速率	排放浓度	排放量	排放速率
		5475	1. 4	(m^3/h)	1,	\ u	(t/a)	(kg/h)	(mg/m^3)	(t/a)	(kg/h)
1#厂房	批灰、打磨 1	TA013	DA013	10000	颗粒物	5.9575	0.834	0.278	27.8	0.357	0.119
1#) /万	批灰、打磨 2	TA014	DA014	5000	颗粒物	5.9575	0.417	0.139	27.8	0.357	0.119
2#厂房	批灰、打磨 1	TA015	DA015	10000	颗粒物	5.9575	0.834	0.278	27.8	0.357	0.119
2#)	批灰、打磨 2	TA016	DA016	5000	颗粒物	5.9575	0.417	0.139	27.8	0.357	0.119

由上表可知,项目批灰、打磨粉尘经处理后能达到《工业涂装工序大气污染物排放标准》(DB33/2146-2018)中新建污染源排放限值(颗粒物≤30mg/m³)。

3、喷漆臭气

本项目使用的溶剂型涂料为醇酸树脂涂料,含有乙酸丁酯、二甲苯等有机溶剂,在使用过程中将会有异味(恶臭),会对人的感官产生不利影响。

根据《恶臭污染评价分级方法》(城市环境与生态第 24 卷 3 期)一文,臭气强度是通过人的嗅觉测试,用规定的等级表示臭气强弱的方法,属于直接表示法。臭气强度表示法将恶臭对人的嗅觉刺激程度分为若干个等级(如 1 级或 2 级),详见下表。

分级	臭气强度 (无量纲)	臭气浓度 (无量纲)	嗅觉感觉
0	0	10	无臭
1	1	23	能稍微感觉到极弱臭味,臭味似有似无
2	2	51	能辨别出何种气味的臭味,例如可以勉 强嗅到酸味或糊焦味
3	3	117	能明显嗅到臭味,例如医院里明显的来 苏水气味
4	4	265	强烈臭气味,例如管理不善的厕所发出的气味
5	5	600	强烈恶臭气味,使人感到恶心、呕吐、头疼、甚至可以引起气管炎的强烈气味

表 1 与臭气强度相对应的臭气浓度限值

由臭气强度和臭气浓度之间的关系式可知,在臭气浓度增加两倍时,给人的感觉量并不会增加两倍;反之,即使臭气浓度减少97%,人的嗅觉感应也就减少50%,因此,臭气浓度在小范围内波动时不会对人的嗅觉感应造成影响。根据臭气强度的嗅觉感觉可以知道,当臭气强度为1和2时,对人嗅觉的刺激程度都比较小,可以认为是低度污染,所以在对恶臭污染程度进行评价分级的时候就可以将1和2划为同一个等级。同样根据臭气强度的嗅觉感觉,在大量实验数据积累的基础上,对恶臭污染等级进行划分,基于韦伯一费希纳拓广定律所得的臭气浓度限值也就得到了相应的等级划分,如表2所示,是根据臭气强度的嗅觉感觉对恶臭污染程度的初步划分。

	2 态美的条件度例少数	871
污染等级(程度)	臭气强度(无量纲)	臭气浓度(无量纲)
【级(无污染)	0	0 ~ 10
Ⅱ级(低度)	0 - 3	10 - 100
Ⅲ级(中度)	3 ~ 4	100 ~ 300
Ⅳ级(重度)	4 ~ 5	300 ~600
V级(严重)	≥5	≥600

表 2 恶臭污染程度初步划分

恶臭是感觉性公害,判断恶臭对人们的影响,主要是以给人们带来不舒服感觉的影响为中心进行的,是一种心理上的反应,故主观因素很强,受到恶臭污染影响的人一般立即离开,到清洁空气环境内,积极换气就可以解除受到是污染影响,随着距离的增加,臭气浓度会迅速下降,资料表明在距源100m的距离内,可最大幅度地减少恶臭浓度影响。

本项目厂界最近的敏感点北侧笕川村,距离约414m,距离较远,可最大幅度地减少恶臭浓度对周边敏感点的影响;另外本项目溶剂型涂料涂装均为于密闭的喷漆间内进行,喷漆房为微负压,可最大限度的减少有机废气的无组织排放,有机废气收集效率约90%,处理效率为90%;有机废气经过处理后可有效减少大部分恶臭对周围环境的影响,另外,企业将加强车间通风,厂区和厂外种植绿植,尽量减少恶臭气体对周围环境的影响。采取以上措施后,恶臭对环境影响可接受。

4、外购板材存储废气

项目原材料中使用的板材(多层板、人造板),在生产过程中使用胶合剂进行粘合,胶合剂中含有甲醛,因此,会在一定时期内缓慢挥发出来;板材从厂家生产到进入项目厂区一般需要经过一定时间,此时,甲醛挥发处于长期缓慢释放阶段,短期内释放的甲醛量极少,而企业板材周转频次在一周左右,根据对同类型企业类比调查,原材料板材挥发的甲醛量很少,通过加强仓库通风换气,不会对周围环境造成明显影响。

5、食堂油烟

项目在综合楼一楼设置员工食堂,劳动定员总人数为 400 人,预计每天用餐人员约 320 人次,配置 4 个灶头,根据相关资料显示,我国人均耗油量为 50g/人•日,则食堂食用油消耗量为 16kg/d。企业食堂一般以大锅菜为主,有别于对外营业的餐饮企业,其产生的油烟废气中油烟含量相对较低,一般占耗油量的

1.2-1.8%,本环评中取 1.5%,故食堂油烟废气产生量为 0.24kg/d,即 72kg/a,食堂使用时间约 4h/d,则油烟产生速率为 0.06kg/h。风机风量为 6000mg/m³,油烟净化率约 85%,则经处理后油烟通过专用烟道至楼顶高空排放,排放量为 10.8kg/a(0.009kg/h),排放浓度为 1.5mg/m³,小于《饮食业油烟排放标准》(GB18483-2001)中 2.0mg/m³的标准限值。

综上所述,本项目废气污染物产生、排放情况一览表见下表。

表 4.3-13 拟建项目有组织废气源强核算一览表

						7.5-1				X WAL		901						1
				产生情况			处理		排放情况		排	放标准			排放源参	数		
产生位置	工序	污染物	产生量 (t/a)	速率 (kg/h)	浓度 (mg/m³)	治理措施	效率 (%)	排放 量(t/a)	速率 (kg/h)	浓度 (mg/m³)	排放 速率 kg/h	排放浓度 (mg/m³)	高度 (m)	直径 (m)	温度 (℃)	风量(m³/h)	排气筒编号	是否达 标
		颗粒物	4.578	1.526	76.3	水帘机		0.412	0.137	6.9	/	30						达标
		醋酸丁酯	1.6805	0.56	28	+干式		0.151	0.050	2.5	/	60						达标
		二甲苯	1.19	0.397	20	过滤棉		0.107	0.036	2	/	40						达标
	油性漆喷	非甲烷总烃	1.7	1.524	76.2	+活性 炭吸附	90	0.411	0.137	6.9	/	80	≥15	0.6	30	20000	DA001	达标
1#厂房	涂	TVOC	4.5705	1.524	76.2	#活性 炭脱附 催化燃 烧	70	0.412	0.137	6.9	/	150		0.0	30	20000	DAWI	达标
1#/ //3	水性漆喷	颗粒物	7.458	2.486	124.3			0.671	0.224	11.2	/	30						达标
	涂1	非甲烷总烃	0.642	0.214	10.7	水帘机	70	0.173	0.058	2.9	/	80	≥15	0.8	30	20000	DA002	达标
	12,1	TVOC	0.642	0.214	10.7			0.173	0.058	2.9	/	150						达标
	水性漆喷	颗粒物	7.458	2.486	124.3			0.671	0.224	11.2	/	30						达标
	涂2	非甲烷总烃	0.642	0.214	10.7	水帘机	70	0.173	0.058	2.9	/	80	≥15	0.8	30	20000	DA003	达标
	23, 2	TVOC	0.642	0.214	10.7			0.173	0.058	2.9	/	150						达标
	辊涂、淋	非甲烷总烃	0.558	0.186	18.6	水喷淋	70	0.151	0.05	5	/	80	≥15	0.5	30	10000	DA004	达标
	涂	TVOC	0.558	0.186	18.6	塔	,,,	0.151	0.05	5	/	150	=13	0.5	30	10000	DA004	达标
2#厂房	油性漆喷	颗粒物	4.578	1.526	76.3	水帘机	90	0.412	0.137	6.9	/	30	≥15	0.6	30	20000	DA005	达标
211) //3	涂	醋酸丁酯	1.6805	0.56	28	+干式	70	0.151	0.050	2.5	/	60	=13	0.0	30	20000	D/1003	达标

				产生情况	Ī		处理		排放情况	Z	排	放标准			排放源参	·数		
产生位置	工序	污染物	产生量 (t/a)	速率 (kg/h)	浓度 (mg/m³)	治理措施	效率 (%)	排放 量(t/a)	速率 (kg/h)	浓度 (mg/m³)	排放 速率 kg/h	排放浓度 (mg/m³)	高度 (m)	直径 (m)	温度	风量 (m³/h)	排气筒编号	是否达 标
		二甲苯	1.19	0.397	20	过滤棉		0.107	0.036	2	/	40						达标
		非甲烷总烃	1.7	1.524	76.2	+活性		0.411	0.137	6.9	/	80						达标
		TVOC	4.5705	1.524	76.2	炭吸附 +活性 炭脱附 催化燃 烧		0.412	0.137	6.9	/	150						达标
	l.e. ktd., Note make	颗粒物	7.458	2.486	124.3			0.671	0.224	11.2	/	30						达标
	水性漆喷 涂 1	非甲烷总烃	0.642	0.214	10.7	水帘机	70	0.173	0.058	2.9	/	80	≥15	0.8	30	20000	DA006	达标
	1/1/1	TVOC	0.642	0.214	10.7			0.173	0.058	2.9	/	150						达标
	水性漆喷	颗粒物	7.458	2.486	124.3			0.671	0.224	11.2	/	30						达标
	水性漆喷 涂 2	非甲烷总烃	0.642	0.214	10.7	水帘机	70	0.173	0.058	2.9	/	80	≥15	0.8	30	20000	DA007	达标
	23, 2	TVOC	0.642	0.214	10.7			0.173	0.058	2.9	/	150						达标
	辊涂、淋	非甲烷总烃	0.558	0.186	18.6	水喷淋	70	0.151	0.05	5	/	80	≥15	0.5	30	10000	DA008	达标
	涂	TVOC	0.558	0.186	18.6	塔	,,,	0.151	0.05	5	/	150		0.5	30	10000	Diloco	达标
1#厂房	木工1	颗粒物	0.4098	0.137	27.4	中央布		0.025	0.008	1.639	3.5	120	≥15	0.3	30	5000	DA009	达标
1117 7/3	木工 2	颗粒物	0.4098	0.137	27.4	中	90	0.025	0.008	1.639	3.5	120	≥15	0.3	30	5000	DA010	达标
2#厂房	木工1	颗粒物	0.4098	0.137	27.4	器器		0.025	0.008	1.639	3.5	120	≥15	0.3	30	5000	DA011	达标
211/ //1	木工 2	颗粒物	0.4098	0.137	27.4			0.025	0.008	1.639	3.5	120	≥15	0.3	30	5000	DA012	达标
1#厂房	批灰、打	颗粒物	5.9575	1.99	199	水滤式	80	0.834	0.278	27.8	/	30	≥15	0.5	30	10000	DA013	达标

				产生情况	Z		处理		排放情况	2	排	放标准			排放源参	数		
产生位置	工序	污染物	产生量 (t/a)	速率 (kg/h)	浓度 (mg/m³)	治理措施	效率 (%)	排放 量(t/a)	速率 (kg/h)	浓度 (mg/m³)	排放 速率 kg/h	排放浓度 (mg/m³)	高度 (m)	直径 (m)	温度 (℃)	风量(m³/h)	排气筒编号	是否达 标
	磨 1					除尘柜												
	批灰、打磨 2	颗粒物	5.9575	1.99	398	布袋除 尘器	90	0.417	0.139	27.8	/	30	≥15	0.3	30	5000	DA014	达标
2115	批灰、打磨1	颗粒物	5.9575	1.99	199	水滤式 除尘柜	80	0.834	0.278	27.8	/	30	≥15	0.5	30	10000	DA015	达标
2#厂房	批灰、打磨 2	颗粒物	5.9575	1.99	398	布袋除 尘器	90	0.417	0.139	27.8	/	30	≥15	0.3	30	5000	DA016	达标

表 4.3-14 拟建项目无组织废气源强核算一览表

污染源位置	工序	污染物名称	污染物排放量(t/a)	污染物排放速率(kg/h)	长度 (m)	宽度 (m)	面源高度 (m)	
		颗粒物	0.458	0.153				
		醋酸丁酯	0.168	0.056				
	油性漆喷涂	二甲苯	0.119	0.04	40	8	9/12	
		非甲烷总烃	0.457	0.152				
		TVOC	0.457	0.152				
1#厂房		颗粒物	0.746	0.249				
	水性漆喷涂 1	非甲烷总烃	0.064	0.021	20	8	9	
		TVOC	0.064	0.021				
		颗粒物	0.746	0.249				
	水性漆喷涂 2	非甲烷总烃	0.064	0.021	20	8	12	
		TVOC	0.064	0.021				

	辊涂、淋涂	非甲烷总烃	0.056	0.019	30	6	3/12
	社体、 	TVOC	0.056	0.019	30	0	3/12
		颗粒物	0.458	0.153			
		醋酸丁酯	0.168	0.056			
	油性漆喷涂	二甲苯	0.119	0.04	40	8	9/12
		非甲烷总烃	0.457	0.152			
		TVOC	0.457	0.152			
		颗粒物	0.746	0.249			
2#厂房	水性漆喷涂 1	非甲烷总烃	0.064	0.021	20	8	9
		TVOC	0.064	0.021			
		颗粒物	0.746	0.249			
	水性漆喷涂 2	非甲烷总烃	0.064	0.021	20	8	12
		TVOC	0.064	0.021			
	報涂、淋涂	非甲烷总烃	0.056	0.019	30	6	3/12
	市比拉、 种拉	TVOC	0.056	0.019	30	0	3/12
1#厂房	木工1	颗粒物	0.033	0.011	50	10	6
1#) //3	木工2	颗粒物	0.033	0.011	50	10	6
2#厂房	木工1	颗粒物	0.033	0.011	80	10	3
2#) //1	木工2	颗粒物	0.033	0.011	80	10	6
1#厂房	批灰、打磨1	颗粒物	0.357	0.119	80	10	9
1#/ //ק	批灰、打磨 2	颗粒物	0.357	0.119	30	10	3
2#厂房	批灰、打磨1	颗粒物	0.357	0.119	80	10	9
2# <i>))</i> 3	批灰、打磨 2	颗粒物	0.357	0.119	30	10	9

4.3.2.2 营运期水污染源强分析

本项目废水包括喷漆水帘机废水、水喷淋塔废水、批灰打磨除尘水帘机废水、职工生活污水。

1、喷漆水帘机废水

项目 1#厂房和 2#厂房分别设置 4 个底漆房、6 个面漆房、3 个修色房,共配备 13 台水帘机;水帘机循环水总量约为 13000t/a,喷淋挥发量约为循环水量的 2%,则挥发量为 260t/a,水帘机补充水量为 260m³/a。水帘机最大储水量为 1m³/台,喷淋废水每天更换一次,1#厂房和 2#厂房废水产生量各为 3900t/a,则水帘机废水总产生量为 7800t/a。

2、水喷淋塔废水

辊涂、淋涂工序采用水喷淋塔进行废气治理,项目共配置 2 台水喷淋塔,水喷淋塔最大储水量为 1m³/台,喷淋塔废水每天更换一次,则单台喷淋塔废水产生量为 300t/a,水喷淋塔废水总产生量为 600t/a。

根据分析本项目喷漆过程废气污染物主要为颗粒物、乙酸丁酯、二甲苯、二丙二醇丁醚等,其中乙酸丁酯微溶于水,二甲苯不溶于水,二丙二醇丁醚和水互溶,水喷淋对二丙二醇丁醚处理效率按 70%,乙酸酯类处理效率按照 30%计算,经计算,有机废气吸收量约为 5.12t/a,根据常见有机物和 COD 当量换算表,有机物吸收量和 COD 的相关系数为 0.5~2.3 之间,本项目取值 1.5,据此计算,该类废水主要污染物约为 COD_{Cr}7.68t/a,据此计算 COD 浓度为 914mg/L,氨氮浓度按 30mg/L 计,SS 浓度按 850mg/L 计,各污染物产生量为 COD_{Cr}7.68t/a、NH₃-N0.252t/a、SS7.14t/a。

3、批灰打磨除尘水帘机废水

项目 1#厂房和 2#厂房打磨、批灰粉尘各配置 1 套水滤式除尘柜,除尘柜由 21 台水帘机组成。水帘机循环水总量约为 6000t/a,喷淋挥发量约为循环水量的 2%,则单套设施挥发量为 120t/a,单套水滤式除尘柜补充水量为 120m³/a。单个水帘机最大储水量为 0.5m³/台,喷淋废水每 2 天更换一次,废水产生量约 3150t/a。根据类比调查,污染物产生浓度为 COD_{Cr} 300mg/L、SS600mg/L、氨氮 20mg/L,各污染物产生量为 COD_{Cr} 0.946t/a、NH₃-N0.064t/a、SS1.89t/a。

本项目废水分质分流收集后纳入厂区内污水处理设施处理,达到《污水综合

排放标准》(GB8978-1996)中三级标准(其中氨氮、总磷排放参照《工业企业废水氮、磷污染物间接排放限值》(DB33/887-2013)中标准限值)后纳入市政污水管网进入缙云县第三污水处理厂处理。

2、生活污水

生活废水主要来自员工生活,本项目实施后项目总定员为 400 人,厂区内设员工食堂及宿舍,住宿的劳动定员约 100 人,年生产 300 天,住宿员工生活用水按 100L/人·天计,不住宿员工生活用水按 50L/人·天计,用水量为 7500t/a。废水产生量以用水量的 80%折算,全年生活废水产生量为 6000t/a。生活废水水质参照参照《给排水手册》中典型的生活污水水质。

TH		产生浓度	产生量	削减量	排放浓度	排放量
坝	Ħ	(mg/L)	(t/a)	(t/a)	(mg/L)	(t/a)
	污水量	/	6000	0	/	6000
生活废水	COD	350	2.1	1.92	30	0.18
	NH ₃ -N	20	0.12	0.114	1	0.006

表 4.3-15 生活污水主要污染物产生及排放情况表

项目各股废水产生情况见表 4.2-16。

污染 产生量 污染物 削减量 排放量 备注 类型 水帘机废 废水量(m³/a) 11550 11550 0 水、喷淋塔| COD(t/a) 8.626 8.279 0.347 经厂区内污水处理设施处理达 废水、批灰 NH₃-N (t/a) 0.316 0.304 0.012 标纳管排放 打磨除尘水 废水 SS(t/a)9.03 8.914 0.116 帘机废水 废水量(m³/a) 6000 6000 0 经隔油池/化粪池预处理达标纳 生活废水 COD (t/a) 1.92 0.18 2.1 管排放 NH_3-N (t/a) 0.12 0.114 0.006 产生量 t/a 合计 削减量 t/a 排放量 t/a 废水 17550 17550 COD_{Cr} 10.726 10.199 0.527 氨氮 0.436 0.418 0.018 SS 9.03 8.814 0.216

表 4.2-16 本项目废水产生及排放情况表

4.3.2.3 营运期噪声染源强分析

本项目噪声源主要包括各种生产设备、治理设施配套的风机、水泵等,噪声声功率级约 90~110dB(A)。通过采取厂房隔声、隔声间、安装隔振机座、消声器

等降噪措施,可有效减小设备噪声对外环境的影响,本项目主要噪声源产生及排放情况见表 4.2-17~4.2-18。

表 4.2-17 项目噪声源强调查清单(室外)

序号	主派	型号	近夕粉 星	空间相差	付位置(m)	声源源强	丰酒校出 井佐	是 怎时机
	声源名称	空亏	设备数量	X	Y	Z	声功率级/dB(A)	声源控制措施	运行时段
1	有机废气风机	20000 m³/h	2	50	120	20	110	隔声、消声、吸声等措施	生产期间 10 小时
2	有机废气风机	20000 m³/h	4	40	120	20	110	隔声、消声、吸声等措施	生产期间 10 小时
3	有机废气风机	10000 m³/h	2	45	120	20	110	隔声、消声、吸声等措施	生产期间 10 小时
4	木工粉尘风机	5000 m³/h	5	51	120	20	105	隔声、消声、吸声等措施	生产期间 10 小时
5	批灰、打磨粉尘风 机	5000 m³/h	5	80	110	20	105	隔声、消声、吸声等措施	生产期间 10 小时
6	水泵	/	3	35	130	6	100	隔声、消声、吸声等措施	生产期间 10 小时

注:本次空间坐标以厂区西南角边界点为中心点

表 4.2-18 项目噪声源强调查清单(室内)

序						源强	声源控制	空间	间相对 (m)	位置	距室 内边	室内边 界最大	运行	建筑 物插	建筑物	外噪声
F 号 	建筑物	勿名称	声源	名称	型号	声功率 级/dB (A)	产源控制	X	Y	Z	界最 近距 离(m)	声级 /dB(A)	时段	入损 失/dB (A)	声功率 级/dB (A))	建筑物 外距离 (m)
1	1#厂房	涂装车 间	喷涂 线	2条	/	90	隔声、减震	150	50	9	北 10	北 73	10h	20	北 53	北1
2	1#) //5	木工车 间	精密 推台	7台	/	110	隔声、减震	160	80	5	西 5	西 90	10h	20	西 70	西 1

			锯													
3			工业 台钻	2 台	/	110	隔声、减震	160	30	5	东 5	东 90	10h	20	东 70	东 1
4		批灰、打 磨车间	磨机	59 台	/	105	隔声、减震	180	60	8	南 7	南 88	10h	20	南 68	南 1
5		涂装车 间	喷涂 线	2条	/	90	隔声、减震	35	115	9	北 10	北 73	10h	20	北 53	北1
6	2#厂房	木工车间	精密 推台 锯	7台	MJ6132	110	隔声、减震	10	110	3	西 5	西 90	10h	20	西 70	西 1
7		門	工业 台钻	2 台	Z4112	110	隔声、减震	120	110	6	东 5	东 90	10h	20	东 70	东 1
8		批灰、打 磨车间	磨机	59 台	/	105	隔声、减震	10	103	9	南 7	南 88	10h	20	南 68	南 1

4.3.2.4 营运期固体废弃物染源强分析

1、污染物产生情况

根据工艺分析,项目营运期间产生的固体废物主要为边角料、木质粉尘,漆渣,废包装桶,废砂纸,收集的打磨、批灰粉尘,废包装材料,污泥,废活性炭,废过滤棉,废催化剂,废布袋,职工生活垃圾。

- (1)边角料、木质粉尘(S1):企业在生产过程中木料在开料、刨、铣、钻、砂光、精裁、雕刻等过程会产生木屑粉尘和边角料等,根据前述工程分析,项目营运期间产生的木边角料和收集的木粉量约121.32t/a,属于一般废物,收集后外运综合利用。
- (2) 漆渣(S2): 项目漆渣包括喷漆水帘机以及干式过滤(过滤棉)处漆渣,水帘机喷淋水定期清捞漆渣,漆渣产生量约43.425t/a(固含量34.74t/a,含水率按20%)。属于危险固废,危废代码HW12/900-252-12,要求委托有资质单位安全处置。
- (3) 废包装桶(S3): 本项目外购的油漆总用量 137.72t/a, 包装规格为 25kg/桶, 产生的废漆桶约 5509 个; 胶水用量为 7t/a, 包装规格为 25kg/桶, 产生的废桶约 280 个; 单个空桶的种类约为 0.5kg, 则产生的废包装桶约为 3.155t/a。属于危险固废, 危废代码 HW49/900-041-49, 要求委托有资质单位安全处置。
- (4) 废砂纸(S4): 砂纸在打磨过程中粗糙面会有一定的磨损,因此,废砂纸量按照用量的70%计算,项目砂纸用量为15000张/a(2t/a),则废砂皮纸产生量为1.4t/a,属于一般废物,收集后外运综合利用。
- (5) 收集的打磨、批灰粉尘(S5): 本项目批灰、打磨产生的粉尘采用水滤除尘柜和布袋进行处理,定期清捞粉尘,产生量约24.9t/a(固含量19.9t/a,含水率按20%)。属于危险固废,危废代码HW12/900-252-12,要求委托有资质单位安全处置。
- (6) 废包装材料(S6): 主要为板材、封边条、砂纸等包装材料,产生量约 1t/a,属于一般废物,收集后外运综合利用。
- (7) 污泥(S7): 项目喷漆、批灰、打磨水帘机中喷淋水定期清捞除渣后纳入厂区污水处理设施处理,污水处理过程中污泥产生量约 6.375t/a(固含量2.55t/a,含水率按 60%)。属于危险固废,危废代码 HW12/900-252-12,要求委

托有资质单位安全处置。

- (8)废活性炭(S8):项目油漆废气采用2套活性炭吸附+活性炭脱附催化燃烧处理,活性炭可循环使用,但使用一定时间后会失去活性(约2年),需进行定期更换,根据企业提供的《浙江家家智能家居有限公司废气处理技术方案(活性炭吸附+催化燃烧处理设备)》本项目活性炭填充量约4.5m³/套,废活性炭产生量约9m³/2a,5t/2a。属于危险固废,危废代码HW49/900-039-49,要求委托有资质单位安全处置。
- (9) 废过滤棉(S9): 本项目油性漆喷涂配置 2 套"干式过滤棉+活性炭吸附+活性炭脱附催化燃烧"治理设施,根据企业废气治理设施设计方案,过滤棉的填充量为 50kg/套,每月更换一次,则废过滤棉年产生量为 1.2t/a。属于危险固废,危废代码 HW12/900-252-12,要求委托有资质单位安全处置。
- (9) 废催化剂(S10):项目有机废气采用催化燃烧法进行处理,其中废催化剂需定期更换,更换量约2t/3a。属于危险固废,危废代码HW50/772-007-50,要求委托有资质单位安全处置。
- (10)废布袋(S11):项目木屑粉尘采用中央除尘设施处理,布袋破损后需进行更换,按一年更换一次,则废布袋产生量约0.2t/a,属于一般废物,收集后外运综合利用。
- (11)生活垃圾(S12):生活垃圾主要来自于职工生活,主要成分为塑料袋、纸、餐余垃圾等,按每人每天 1kg 计算,项目预计劳动定员 400 人,每年生产天数为 300 天,则生活垃圾产生量为 120t/a。分类收集后委托环卫部门清运处置。

2、污染物判断

根据上述分析,项目营运期间固体废弃物产生情况如下:

序号	副产物名称	产生工序	形态	主要成分	产生量 (t/a)
1	边角料、木质粉尘	木工工序	固态	木材、木粉	121.32
2	漆渣	喷漆	固态	树脂	43.425
3	废包装桶	油漆和胶粘剂使用	固态	铁桶	3.155
4	废砂纸	打磨	固态	砂纸	1.4
5	收集的打磨、批灰粉尘	打磨、批灰	固态	树脂	24.9

表 4.3-19 项目副产物产生情况汇总表

6	废包装材料	原料使用	固态	塑料、纸等	1
7	污泥	废水处理	固态	污泥	6.375
8	废活性炭	废气处理	固态	活性炭、有机废气	5t/2 年
9	废过滤棉	废气处理	固态	过滤棉	1.2
10	废催化剂	废气处理	固态	催化剂	2t/2 年
11	废布袋	废气处理	固态	布袋	0.2
12	生活垃圾	职工生活	固态	纸、塑料等	120

根据《固体废物鉴别导则(试行)》,判定上述副产物情况如下:

表 4.3-20 副产物属性判定表

序号	副产物名称	产生工序	形态	主要成分	是否属于固废	判定依据
1	边角料、木质粉尘	木工工序	固态	木材、木粉	是	4.2a 4.3 a
2	漆渣	喷漆	固态	树脂	是	4.3 e
3	废包装桶	油漆和胶粘剂 使用	固态	铁桶	是	4.2 m
4	废砂纸	打磨	固态	砂纸	是	4.2 m
5	收集的打磨、批灰粉 尘	打磨、批灰	固态	树脂	是	4.3 e
6	废包装材料	原料使用	固态	塑料、纸等	是	4.2 m
7	污泥	废水处理	固态	污泥	是	4.3 e
8	废活性炭	废气处理	固态	活性炭、有机废气	是	4.3 1
9	废过滤棉	废气处理	固态	过滤棉	是	4.3 1
10	废催化剂	废气处理	固态	催化剂	是	4.3 n
11	废布袋	废气处理	固态	布袋	是	4.3 n
12	生活垃圾	职工生活	固态	纸、塑料等	是	5.1 b

根据《国家危险废物名录》(2021 版)、《危险废物鉴别标准》判定本项目产生的固废是否属于危险废物。见表 4.3-21:

表 4.3-21 危险废物属性判定表

序号	固体废物名称	固体废物名称 产生工序		废物代码
1	边角料、木质粉尘	木工工序	否	/
2	漆渣	喷漆	是	HW12/900-252-12
3	废包装桶	油漆和胶粘剂使用	是	HW49/900-041-49
4	废砂纸	打磨	否	/
5	收集的打磨、批灰粉尘	打磨、批灰	是	HW12/900-252-12
6	废包装材料	原料使用	否	/
7	污泥	废水处理	是	HW12/900-252-12
8	废活性炭	废气处理	是	HW49/900-039-49

9	废过滤棉	废气处理	是	HW12/900-252-12
10	废催化剂	废气处理	是	HW50/772-007-50
11	废布袋	废气处理	否	/
12	生活垃圾	职工生活	否	/

综上,本项目所产生的固体废物情况汇总如下表:

表 4.3-22 项目固体废物分析结果汇总表

序号	固体废物名称	产生工序	形态	属性	废物代码	预测产生 量 t/a	处置情况
1	边角料、木质粉 尘	木工工序	固态	一般固废	/	121.32	外售综合利用
2	漆渣	喷漆	固态	危险固废	HW12/900-252- 12	43.425	委托有资质单 位处置
3	废包装桶	油漆和胶粘剂 使用	固态	危险固废	HW49/900-041- 49	3.155	委托有资质单 位处置
4	废砂纸	打磨	固态	一般固废	/	1.4	外售综合利用
5	收集的打磨、批 灰粉尘	打磨、批灰	固态	危险废物	HW12/900-252- 12	24.9	委托有资质单 位处置
6	废包装材料	原料使用	固态	一般固废	/	1	外售综合利用
7	污泥	废水处理	固态	危险废物	HW12/900-252- 12	6.375	委托有资质单 位处置
8	废活性炭	废气处理	固态	危险废物	HW49/900-039- 49	5t/2 年	委托有资质单 位处置
9	废过滤棉	废气处理	固态	危险废物	HW12/900-252- 12	1.2	委托有资质单 位处置
10	废催化剂	废气处理	固态	危险废物	HW50/772-007- 50	2t/2 年	委托有资质单 位处置
11	废布袋	废气处理	固态	一般固废	/	0.2	外售综合利用
12	生活垃圾	职工生活	固态	一般固废	/	120	环卫部门清 运、处置

根据分析,本项目产生的危险废物主要包括漆渣、废包装桶、收集的打磨、批灰粉尘、污泥、废活性炭、废催化剂等,本项目危险废物汇总如下表。

表 4.3-23 项目危险废物分析结果汇总表

危险废 物名称	危险 废物 类别	危险废物 代码	产生 量 t/a	产生工序及装置	形态	主要成分	有害 成分	产生周期	危险特性
漆渣	HW12	900-252-12	43.425	喷漆	固态	树脂	树脂	不定时	T/I
废包装	HW49	900-041-49	3.155	油漆和胶	固态	铁桶	树脂	每	T/I

桶				粘剂使用				天	n
收集的 打磨、 批灰粉 尘	HW12	900-252-12	24.9	打磨、批灰	固态	树脂	树脂	不定时	T/I
污泥	HW12	900-252-12	6.375	废水处理	固态	污泥	树脂	不定时	T/I
废过滤 棉	HW12	900-252-12	1.2	废气处理	固态	过滤棉、有 机废气	有机 废气	每月	T/I
废活性 炭	HW49	900-039-49	5	废气处理	固态	活性炭、有 机废气	有机 废气	2 年	T
废催化 剂	HW50	772-007-50	2	废气处理	固态	催化剂	催化 剂	2 年	T

危险废物污染防治措施:建立规范化危险废物贮存场所,可采用钢、铝等材质的包装容器,并设置防雨、防火、防雷、防扬尘装置。危险废物最终委托有资质单位处置,并做好相关台账和转移联单。

4.3.2.5 本项目污染物产排汇总

该项目营运期间"三废"产生及排放情况详见下表 4.3-24 所示。

名称 污染物名称 产生量 削减量 排放量 废水量 17550 17550 0 10.199 COD_{Cr} 10.726 0.527 废水 NH₃-N 0.436 0.418 0.018 SS 9.03 8.814 0.216 颗粒物 64.408 11.57 36.91 乙酸酯类 3.361 2.723 0.638 苯系物 2.38 1.928 0.452 废气 非甲烷总烃 12.826 9.728 3.098 TVOC 12.826 9.728 3.098 食堂油烟 72kg/a 61.2kg/a 10.8kg/a 边角料、木质粉尘 121.32 121.32 0 0 1.4 1.4 废砂纸 一般 1 0 废包装材料 1 固废 0 废布袋 0.2 0.2 120 0 生活垃圾 120 漆渣 43.425 43.425 0 危险固废 废包装桶 3.155 3.155 0

表 4.3-24 项目污染物产生及排放汇总表

收集的打磨、批灰粉尘	24.9	24.9	0
污泥	6.375	6.375	0
废活性炭	5	5	0
废吸附棉	1.2	1.2	0
废催化剂	2	2	0
合计	86.055	86.055	0

4.3.2.6 迁建项目实施前后污染物对照

本项目实施前后浙江家家智能家居有限公司主要污染物排放量对照表见表 4.3-25。

	污染物	现有工程排	拟建项目排	"以新带老"	本项目实施后	本项目实施前
	万条初	放量	放量	削减量	总排放量	后增减量
座与	颗粒物(t/a)	0.107	11.57	0.107	11.57	+11.463
废气	TVOC (t/a)	1.224	3.098	1.224	3.098	+1.874
	废水量 (m³/a)	918	17550	918	17550	+16632
废水	COD (t/a)	0.028	0.527	0.028	0.527	+0.499
	$NH_3-N (t/a)$	0.001	0.018	0.001	0.018	+0.017
古	体废物(t/a)	0	0	0	0	0

表 4.3-25 本项目实施前后废气、废水对照表

4.3.3 项目非正常排放分析

非正常情况指正常开停车或部分设备检修时排放的污染物及工艺设备或环保设备达不到设计规定指标要求或出现故障时排放的污染物。

1、非正常情况废气排放

项目非正常情况下废气排放影响较大的是废气处理装置出现故障,如:活性 炭吸附装置、除尘装置处理效率降低。本环评要求企业对加强污染物处理装置的 管理及日常检修维护,严防非正常工况的发生,在非正常工况发生时应迅速组织 力量进行排除,使非正常工况对周围环境及保护目标的影响减少到最低程度。

项目非正常排放情况以废气处理设施处理效率下降至零进行分析,非正常情况下各污染物排放速率和排放浓度见表 4.3-26。

表 4.3-26 非正常情况污染物排放情况一栏表

产生位置	工序	排气筒编 号	污染物	排放速 率 (kg/h)	排放浓度 (mg/m³)	排放速率标 准(kg/h)	排放浓度标准(mg/m³)			
			颗粒物	1.37	69	/	30			
			醋酸丁酯	0.504	25.2	/	60			
	油性漆喷涂	DA001	二甲苯	0.36	18	1	40			
			非甲烷总烃	1.37	69	/	80			
			TVOC	1.37	69	/	150			
			颗粒物	2.24	112	1	30			
1#厂房	水性漆喷涂1	DA002	非甲烷总烃	0.193	10	/	80			
			TVOC	0.193	10	1	150			
			颗粒物	2.24	112	/	30			
	水性漆喷涂 2	DA003	非甲烷总烃	0.193	10	/	80			
			TVOC	0.193	10	/	150			
	辊涂、淋涂	DA004	非甲烷总烃	0.167	16.7	/	80			
	来你、 <i>你</i> 你	DA004	TVOC	0.167	16.7	/	150			
			颗粒物	1.37	69	/	30			
			醋酸丁酯	0.504	25.2	1	60			
2#广户	油性漆喷涂	DA005	二甲苯	0.36	18	1	40			
2#厂房			非甲烷总烃	1.37	69	1	80			
			TVOC	1.37	69	1	150			
	水性漆喷涂 1	DA006	颗粒物	2.24	112	1	30			

			非甲烷总烃	0.193	10	/	80
			TVOC	0.193	10	/	150
			颗粒物	2.24	112	/	30
	水性漆喷涂 2	DA007	非甲烷总烃	0.193	10	/	80
			TVOC	0.193	10	/	150
	辊涂、淋涂	DA008	非甲烷总烃	0.167	16.7	1	80
	、 	DA008	TVOC	0.167	16.7	/	150
1#厂房	木工1	DA009	颗粒物	0.082	16.4	3.5	120
1#) //3	木工 2	DA010	颗粒物	0.082	16.4	3.5	120
2#厂房	木工 1	DA011	颗粒物	0.082	16.4	3.5	120
2#) //3	木工 2	DA012	颗粒物	0.082	16.4	3.5	120
1#厂房	批灰、打磨1	DA013	颗粒物	1.39	139	/	30
1#/ 万	批灰、打磨 2	DA014	颗粒物	1.39	278	1	30
2#厂房	批灰、打磨 1	DA015	颗粒物	1.39	139	/	30
2# <i>) 1/</i> 5	批灰、打磨 2	DA016	颗粒物	1.39	278	/	30

由上表可知,非正常排放情况下,DA001、DA002、DA003、DA005、DA006、DA007、DA013、DA014、DA015、DA016 排气筒废气排放超标,因此,要求建设单位加强管理,做好废气治理设施的维护、检修,避免废气非正常排放。

2、非正常情况废水排放

项目排放的主要为喷漆水帘机废水、水喷淋塔废水、批灰打磨除尘水帘机废水和生活污水,如若废水不能做到达标排放进入污水管网,进而对污水处理厂造成冲击,对污水处理厂影响较大。

3、非正常工况发生的预防措施

非正常排放时,若能及时得到解决,对环境的影响将是短时间的。因此,生产过程中必须加强环保治理设施的管理,严格操作,避免非正常排放的发生,准备好废气治理设备易损备用件,以便出现故障时及时更换,减轻废气非正常排放对周围环境的影响。

建议企业安装自动报警系统,将废气净化系统与生产设备联动,当废气净化系统出现诸如引风机故障或无法运行时,引起的风压的变化可立即反馈至生产线,此时将启动应急响应并采取以下应对措施:立即停止相关生产环节,避免废气的继续产生,立即请有关技术人员进行维修。此外,企业每天安排专业人员检查生产设备运行状况,每个月对生产线设备进行一次全面检修;废气处理设施每班检查2次。

设专职环保人员进行管理及保养废水、废气处理系统,定期对各处理系统进行巡检、调节、保养和维修,及时更换易坏或破损零部件,使之能长期有效地处于正常的运行之中;重要工段的泵件及风机等设备均设置备用,以降低一般事故的发生机率。

本环评要求企业加强对污染物处理装置的管理及日常检修维护,严防非正常 工况的发生,在非正常工况发生时应迅速组织力量进行排除,使非正常工况对周 围环境及保护目标的影响减少到最低程度。

4.4 总量控制

1、总量控制因子

根据《建设项目主要污染物排放总量指标审核及管理暂行办法》(环发[2014]197号)、《浙江省生态环境保护"十四五"规划》等相关文件规定,纳

入总量控制的污染因子包括化学需氧量、氨氮、二氧化硫、氮氧化物、颗粒物、挥发性有机物和重点重金属污染物;根据本工程预测分析,确定本项目纳入总量控制因子的为 CODcr、NH3-N、VOC、烟粉尘。

2、原有项目总量控制指标

浙江家家智能家居有限公司位于缙云县新建镇洋山工业区 1 号的原有项目生产规模为年产木饰面 10 万 m²、木门 2 万樘。该项目生产过程中无生产废水外排,仅排放生活污水;排放的废气为 VOC 和烟粉尘,无二氧化硫、氮氧化物排放;因此原有项目无需进行排污权交易。

原有项目排放的生活污水为 918t/a,COD0.028t/a、氨氮 0.001t/a,由于仅排放生活污水,COD 和氨氮这两项总量控制指标未进行区域削减替代,本次迁建项目排放的废水中 COD 和氨氮须全部进行区域削减替代和排污权交易。原有项目排放 VOC1.224t/a、烟粉尘 0.107t/a,已进行 1:1.5 区域削减替代,本次迁建项目新增的烟粉尘量须按照 1:1.5 进行区域削减替代,新增的 VOC 量须按照 1:1 进行区域削减替代。

3、迁建项目污染物排放总量

根据工程分析结果,本项目迁建项目主要污染物排放量为 COD_{Cr}0.527t/a、NH₃-N0.018t/a、VOC3.098t/a、烟粉尘 11.570t/a。

4、本项目总量平衡方案

根据《建设项目主要污染物排放总量指标审核及管理暂行办法》(环发[2014]197号)、《浙江省排污权储备和出让管理暂行办法》(浙环发[2013]45号)和《丽水市排污权有偿使用和交易管理办法实施细则(试行)》等关文件及当地生态环境主管部门管理要求,确定主要污染物COD和氨氮实行区域等量削减,烟粉尘实行1.5倍削减量替代,VOC实行1倍削减量替代。

本项目总量控制指标平衡表见下表。

	(A)								
序	以 目 キントヒィナヒメュー	废	水	废气					
号	总量控制指标	COD	氨氮	VOC	烟粉尘				
1	原有项目排放量	0.028	0.001	1.224	0.107				
2	以新带老削减量	0.028	0.001	1.224	0.107				
3	迁建项目排放量	0.527	0.018	3.098	11.570				
4	合计排放总量	0.527	0.018	3.098	11.570				
5	己获得排污权量	0	0	0	0				

表 4.4-1 总量指标平衡表(单位: t/a)

浙江家家智能家居有限公司年产6000套智能定制家居生产线项目环境影响报告书

6	需要进行区域削减替代的量	0.527	0.018	1.874	11.463
7	区域削减替代比例	1:1	1:1	1:1	1:1.5
Q	区域替代削减量	0.527	0.018	2.811	17 195
0	(排污权交易量)	0.527	0.016	2.011	17.173

本次迁建项目排放的 COD、NH₃-N 这 2 项总量控制指标由建设单位向当地 生态环境主管部门申请,在获得该项目环评批复文件后,凭环评批复文件及时到 浙江省排污权交易网报名并参加排污权网上竞价,获得所需排污权指标。其中烟 (粉)尘、VOCs 目前尚未进行排污权交易,迁建项目增加量在缙云县区域内平 衡。

5环境现状调查与评价

5.1 自然环境概况

5.1.1 地理位置

缙云县地处浙江省中南部丘陵山区,隶属浙江省丽水市,位于北纬 28°25′~28°57′,东经 119°52′~120°25′,东临仙居、永嘉,南连青田,西邻莲都、武义,北接永康、磐安,东西宽 54.6 公里,南北长 59.9 公里,县界全长 304.4 公里,总面积 1503.52 公里,建成区面积为 4.6 平方公里,全县设7个建制镇、8个乡,3 个街道办事处,253 个行政村。县人民政府驻地五云镇,北距杭州 175 公里(公路 262 公里)。

新建镇地处缙云县西部,距县城 15 公里,俗称缙云"西乡",是钱塘江水系婺江支流的发源地之一,东紧靠 330 国道与新碧农管处乡接壤,南与莲都区双溪镇和本县七里乡相连,西与武义县交界,北与永康市西城街道办事处为邻。新建镇交通发达,金丽温高速公路自北向南穿境而过,总长度 10 多公里,通往丽水、武义道路方便,岩沿至新建一级公路建设正在规划当中。

浙江家家智能家居有限公司位于缙云县新建 01-M2-01-2 地块(缙云县新建镇笕川村),企业周边情况如下:

项目	方位	概况				
项目地址		浙江省缙云县新建 01-M2-01-2 地块(缙云县新建镇笕川村)				
	东侧	工业六路、在建文化创意小微园				
人 项目厂界	南侧	岩西公路,山体				
切日/ 介 	西侧	水塘、在建恒生轮毂有限公司				
	北侧	在建恒生轮毂有限公司、在建浙江盛羽体育用品有限公司				

表 5.1-1 项目周边情况一览表

与项目最近的居住区为笕川村,位于项目东北侧最近距离约 414m。地理位置见附图 1,周围环境详见附图 2。

5.1.2 地形、地貌、地质

缙云县地处武夷山—戴云山隆起地带和寿昌—丽水—景宁断裂带的中段。地 貌类型分中心、低山、丘陵、谷地四类,其中山地、丘陵约占全总面积的 80%, 是"八山一水一分田"的山区县。地势自东向西北倾斜。山脉大致以好溪为界, 东部为括苍山脉,西部为仙霞岭余脉。东半部群峰崛起,地势高峻,海拔千米以上山峰 343 座。其中东北部为大盘山所延伸,以低中山地貌为主;东南部为括苍山盘踞,为中山地貌,南部的大洋山主峰,海拔 1500m,海拔千米以上主峰 3 座。北部地层陷落,构成壶镇、新建两块河谷盆地。中部丘陵广阔绵延,为仙霞岭与括苍山的过度地段。全境地形具东南西三面环山,北口张开呈"V"型特征。

5.1.3 水文特征

全县河流均为山溪性河流。主要有好溪、新建溪、永安溪三条,分属瓯江、钱塘江、灵江三个水系。其中好溪为县内最大的河流,发源于磐安县大盘山,自东北向西南斜贯穿境入丽水,全长129km,县境内长100.8km,流域面积791.8km²,其干流流经雁岭、壶镇、东方、五云、东渡等五个乡镇。全县水资源丰富,年平均径流量13.69亿 m³,人均占有水资源3321m³。河流落差大,水力资源总蕴藏量8.3万 kW,人均0.2kW。

好溪为瓯江水系的二级支流。好溪属瓯江水系,发源于磐安县大盘山南侧笔架山马祥岭。向西南流经壶镇镇双溪村,纳入白竹溪水。至壶镇镇潜明村纳入潜明坑水。至左库附近有棠溪来汇。在壶镇镇社后潭有浣溪汇合。至青川村附近有北山溪注入。过东方镇岱石口村汇入汉溪水。至县城五云街道龙津潭,正名称好溪。至东渡镇东渡村纳荆坑水,在兰口村与章溪汇合。然后水出缙云县境,入莲都区境,汇入大溪。好溪干流沿江两岸高山对峙,仅有少量平原零星分布于河谷地带。

好溪干流全长 129km,流域面积 1340km²,河道比降 4.37‰,好溪干流在缙云县境内长 66.11km,流域面积 976.8km²,落差 123m,平均坡降 1.86‰。缙云境内好溪流域面积在 200km²以上的主要支流有章溪。章溪发源于缙云其大平山,向西北流经大洋、胡源,纳北面支流后折向西南.在貝城下游的东渡镇至雅宅从左岸纳入好溪河长 44.4km,流域面积 284.6km²。200km²以下的支流有浣溪、棠溪、汉溪、北山溪等。

5.1.4 气候气象

缙云县所在区域属中亚热带季风气候区,全年四季分明,温和湿润,日照充足,雨量充沛。由于地形起伏升降大,气温差异明显,具有"一山四季,山前山后不同天"的垂直立体气候的特征。台风暴雨常出现在6~8月之间。冰雹灾害主

要出现在3~8月之间,为全省多雹中心地带之一。

主要特征为:

年平均气温 17.2~13.5℃,

极端最高气温为41.9℃,

极端最低气温为-13.1℃,

年平均日照时数 1875.3 小时,

平均无霜期245天,

年平均降水量 1373~1798 毫米(县城为 1437.2 毫米),

年最大降雨量 1950 毫米,

年最小降雨量915毫米,

年平均相对湿度80%,

区域内全年主导风向为N风,

年平均风速 1.5m/s,

年时最大风速 36m/s。

5.1.5 土壤与植被

根据缙云县第二次土壤普查工作结果,全县主要有红壤、黄壤、岩性土、潮土和水稻土等 5 个土类,11 个亚类,36 个土属,69 个土种。土壤总面积约 217.6 万亩,以红壤土类分布最广,占总面积的 61.5%,黄壤占 21.5%,岩性土占 4.0%,潮土占 0.9%,水稻土占 12.1%。

县域自然土壤垂直分布较明显,大约在海拔 700m 左右是黄壤与红壤两大土类的分界线。其中黄壤分布于 700m 以上的低、中山;红壤分布于海拔 700m 以下的丘陵地;岩性土分布于盆地中低丘上;潮土分布于河漫滩地、山口洪积扇等;水稻土分布于黄壤带梯田、低山丘陵梯田、洪积扇前缘和顶部、溪流两岸等。山地土壤的成土母质种类主要有酸性岩浆岩,包括凝灰岩、花岗岩。

缙云县地处中亚热带,属于我国东部湿润林区,亚热带常绿阔叶林带,常年湿润常绿阔叶林东部组的中亚热带常绿阔叶林区带的南带与北带的过渡地带。

在境内垂直气候因素影响下,海拔从低到高,自然林带分布顺序一般为常绿阔叶林一落叶阔叶林和针叶林混交一针叶林。地带性的顶极植物群落是常绿阔叶林,主要分布于海拔 1200m 以下的山地丘陵。目前较好的常绿阔叶林已很少见。

取而代之的是亚热带针叶林,针阔混交林,严重的地方沦为次生灌丛草或草丛,亚热带针叶林是目前面积分布最广的森林类型,约占全县森林面积的 90%,现有四个群系,黄山松林、马尾松林、杉木林、柳杉林。黄山松林分布于 700-800m以上山地,是中山、低中山的主要代表群落;马尾松林分布于黄山松林之下,是缙云县面积分布最大,资源丰富的本县代表群系之一。亚热带山地灌草丛分布于丘陵山地,丛海拔 200-1300m 都有分布。亚热带针阔混交林主要分布在人为活动相对较少的中山地带,低山丘陵尚有少量分布。此外还有毛竹、油茶、油桐、板栗、果树、桑、茶等人工林植被。

5.2 基础设施概况

5.2.1 缙云县第三污水处理厂

缙云县第三污水处理厂位于位于缙云县新碧街道三都村西岩自然村东侧、岩西公路以北、新建溪以南,占地面积 33691m²,污水处理建设总规模为 2.0 万m³/d,分两期实施(近期建设规模为 1.0 万m³/d,远期建设规模 2.0 万m³/d)。污水处理厂服务范围为缙云县五云街道西北部、新建镇、七里乡、新碧南片三都村区块企业以及居民生活污水。

缙云县第三污水处理厂近期处理规模为 1 万 t/d。出水 COD_{Cr}、TN 指标执行 浙江省《城镇污水处理厂主要水污染物排放标准》(DB33/2169-2018)中新建城 镇污水处理厂主要水污染物排放限值,NH₃-N、TP 指标排放达到《地表水环境 质量标准》(GB3838-2002)III 类标准,其它指标执行《城镇污水处理厂污染物 排放标准》(GB18918-2002)一级 A 标准。

						-		
排放标准	рН	BOD ₅	SS	石油类	$\mathrm{COD}_{\mathrm{Cr}}$	NH ₃ -N	TN	TP
GB18918-2002 一级 A 标准	6~9	≤10	≤10	≤1	/	/	/	/
DB33/2169-2018	/	/	/	/	30	/	10 (12) 1	/
GB3838-2002	/	/	/	/	/	1.0	/	0.2

表 5.2-1 城镇污水处理厂尾水排放污染物排放标准 单位:除 pH 外,均为 mg/L

1、污水处理工艺流程

注1: 括号内数值为每年11月1日至次年3月31日执行。

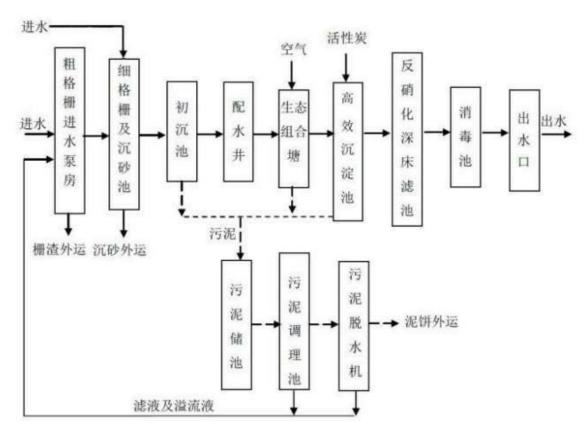


图 5.2.1 污水处理工艺流程图

污水处理工艺流程为:细格栅+旋流沉砂池+平流沉淀池+生态反应池+高效沉淀池+反硝化深床滤池+接触消毒池。预处理:进水共分两部分,一是厂外 DN600 压力管输送的污水,通过细格栅旋流沉砂池+初沉池处理,二是厂外 DN600 重力管输送的污水以及厂内生产、生活污废水,预留粗格栅及提升泵房,用于提升此部分污水。初沉池污泥、生态池剩余污泥、高效沉淀池剩余污泥均进入污泥池进行污泥预处理,最后由污泥泵输送至高压板框压滤机压榨脱水,压滤机滤液回流至粗格栅提升泵房。

2、污水处理运行情况

为了解污水处理厂的运行情况,本评价收集了污水处理厂 2023 年 10 月 3 日~2023 年 10 月 9 日在线监测数据(数据来源:浙江省生态环境厅-浙江省污染源自动监控信息管理平台),具体见表 5.2-2。

根据监测结果可知,污水处理厂尾水中各污染因子可以做到稳定达标排放。

序号	рН	COD _{Cr} (mg/L)	氨氮(mg/L)	总磷(mg/L)	总氮(mg/L)	废水瞬时流 量(L/s)
2023-10-09	7 69	11 74	0.01	0.0306	7 627	68 82

表 5.2-2 污水处理厂出水水质排放情况一览表

2023-10-08	7.72	18.71	0.0501	0.0658	6.796	72.47
2023-10-07	7.65	23.96	0.01	0.0296	7.241	76.4
2023-10-06	7.59	20.68	0.01	0.0379	6.889	64.09
2023-10-05	7.58	18.52	0.01	0.0659	6.587	55.77
2023-10-04	7.55	16.08	0.01	0.0691	6.422	65.48
2023-10-03	7.5	17.24	0.01	0.0787	6.525	66.34
标准值	6~9	30	1.0	0.2	10(12)	1万 t/d
是否达标	达标	达标	达标	达标	达标	达标

本项目位于缙云县新建 01-M2-01-2 地块(缙云县新建镇笕川村),在缙云县缙云县第三污水处理厂服务范围内,项目所在地已具备废水纳管条件,污水管网可通至缙云县第三污水处理厂;目前,缙云县第三污水处理厂处理量约为4819~6600t/d,小于 1 万 t/d,尚有余量能处理本项目排放的废水;根据污水处理厂 2023 年 10 月 3 日~2023 年 10 月 9 日在线监测数据,污水处理厂尾水中各污染因子可以做到稳定达标排放。

5.3 环境质量现状调查与评价

5.3.1 地表水环境质量现状调查与评价

本项目位于缙云县新建 01-M2-01-2 地块(缙云县新建镇笕川村),附近水域为III类水质农业、工业用水区,评价标准执行(GB3838-2002)《地表水环境质量标准》III类水标准;根据《2022年丽水市生态环境状况公报》,项目附近河道 2022年新建镇水源地、宅基断面(监测断面见图 4.3.1)水质均达到《地表水环境质量标准》(GB3838-2002)中的相应标准,水质现状满足对应的水功能区划的要求。

表 5.3-1 2022 年缙云县地表水水质状况一览表

县(市、区)	断面名称	断面类型	控制级别	功能目标	2022 年水质
缙云	新建镇水源地	河流	县控	II类	II类
缙云	宅基	河流	县控	III类	III类

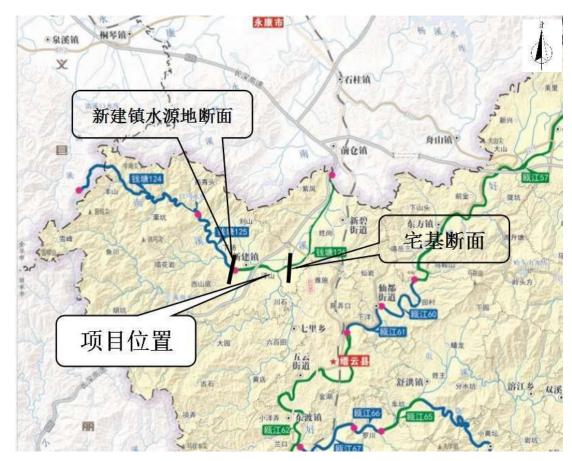


图 5.3.1 地表水监测点位图

5.3.2 地下水环境质量现状调查与评价

项目位于缙云县新建 01-M2-01-2 地块(缙云县新建镇笕川村),所在地尚未对地下水类别进行划分,参照地表水功能划分,该区域地下水环境质量执行《地下水质量标准》(GB/T14848-2017)中的 III 类标准。为了解项目所在地附近地下水环境质量现状,本环评委托浙江齐鑫环境监测有限公司对项目附近的地下水现状进行了监测(检测报告编号为"齐鑫第 K23090002 号"),同时引用《浙江华洋赛车股份有限公司运动摩托车智能制造项目环境影响报告书》地下水水位的检测数据,监测情况具体如下。

1、监测点位

监测布点: 3个水质监测点,6个水位监测点。

编号	监测点位	监测内容	监测时间	来源
TW1	项目南侧约 65m	水质、水位	2023.911	
TW2	洋山工业区,距离厂界西北侧约 210m	水质、水位	2023.911	本次委托检测
TW3	洋山工业区,距离厂界东北侧约 270m	水质、水位	2023.911	

表 5.3-2 地下水监测点位

TW4	浙江省丽水市缙云县新碧街道三都区 块 D-26 地块,距离厂界东侧约 1573m	水位	2022.6.27	引用浙江华洋
TW5	西岩村,距离厂界东侧约 1228m	水位	2022.6.27	赛车股份有限 公司环评
TW6	梅溪村,距离厂界东侧约 1095m	水位	2022.6.27	7 7 7 7

TW1~TW6均监测地下水水位,其中TW1、TW2、TW3同时监测地下水水质,见图 4.3.2。

2、监测项目

- (1) K⁺, Na⁺, Ca²⁺, Mg²⁺, CO₃²⁻, HCO₃⁻, Cl⁻, SO₄²⁻;
- (2) pH、色度、浑浊度、臭和味、肉眼可见物、氨氮、硝酸盐、亚硝酸盐、 挥发性酚、氰化物、砷、汞、铬(六价)、总硬度、铅、氟、镉、铁、锰、镍、锌、 铝、铜、溶解性总固体、高锰酸盐指数、硫化物、氰化物、氟化物、阴离子表面 活性剂、总大肠菌群、细菌总数及水位和石油类、二甲苯等。

图 5.3.2 地下水监测点位图

3、监测时间及频率

监测时间见表 5.3-2, 监测 1 天, 1 次/d。

4、采样方法

参照《地下水环境监测技术规范》以及相关国家、地方规定要求进行。

5、评价方法

地下水水质现状评价采用标准指数法,计算公式分为以下两种情况:

A) 对于评价标准为定值的水质因子, 其标准指数计算公式为:

Pi=Ci/CSi

式中: Pi-第 i 个水质因子的标准指数, 无量纲;

Ci一第 i 个水质因子的监测浓度值, mg/L;

Csi一第 i 个水质因子的标准浓度值, mg/L。

b)对于评价标准为区间值的水质因子(如 pH 值),其标准指数计算方法, 公式为:

$$P_{pH,j} = \frac{7.0 - pH_{j}}{7.0 - pH_{sd}} \qquad P_{pH,j} \le 7.0$$

$$P_{pH,j} = \frac{pH_{j} - 7.0}{pH_{su} - 7.0} \qquad P_{pH,j} \ge 7.0$$

式中: PpH—pH 的标准指数, 无量纲;

pH一pH 监测值;

pHsu一标准中 pH 的上限值;

pHsd一标准中 pH 的下限值。

标准指数>1,表明该水质因子已超标,标准指数越大,超标越严重。

6、监测及评价结果

(1) 地下水水位监测结果

地下水位监测数据见表 5.3-3。

表 5.3-3 地下水水位监测数据汇总表

编号	坐标	水位(m)
TW1	E: 120°02′12.91″、N: 28°43′03.54″	1.11
TW2	E: 120°00′06.89″、N: 28°43′16.96″	0.91
TW3	E: 120°02′26.82″、N: 28°423′16.01″	1.20
TW4	E: 120°03′39.13″、N: 28°43′03.14″	0.78
TW5	E: 120°03′26.84″、N: 28°43′09.14″	1.44
TW6	E: 120°03′18.89″、N: 28°42′52.17″	0.47

(2) 常规离子监测结果及平衡分析

常规离子监测结果及平衡分析见表 5.3-4。

监测因子 W1W2 W3 钾 mg/L 12.3 7.53 10.0 钾×1 (价态) mol/L 0.000315 0.000193 0.000257 钠 mg/L 6.38 7.81 6.20 钠×1(价态)mol/L 0.000277 0.000340 0.000270 离 钙 mg/L 9.01 8.59 9.24 钙×2(价态) mol/L 0.000225 0.000215 0.000231 镁 mg/L 7.30 5.78 6.89 镁×2(价态) mol/L 0.000304 0.000241 0.000287阳离子合计 mol/L 0.001651609 0.001443809 0.001562655 碳酸盐 mg/L 11 10 11 碳酸盐×2(价态) mol/L 0.000183 0.000167 0.000183 重碳酸盐 mg/L 8 6 7 重碳酸盐×1(价态) mol/L 0.000131 0.000115 0.000984 氯离子 mg/L 25.6 34.4 28.6 氯离子×1(价态) mol/L 0.000721 0.000969 0.000806 硫酸根离子 mg/L 27.3 0.622 8.53 硫酸根离子×2(价态) mol/L 0.000284 0.000648 0.000889 阴离子合计 mol/L 0.001651609 0.001443809 0.001562655 阴阳离子平衡情况(E) 4.0% -0.5% -3.8% E= (mc-ma) / (mc+ma)

5.3-4 基本离子监测结果评价一览表

阳离子电荷平衡分析,W1 误差为4.0%,W2 误差为-0.5%,W3 误差为3.8%,均在5%的误差内,各监测点位的阴阳离子总化合价基本平衡。

(3) 水质监测结果及评价

水质监测结果及评价见表 5.3-5~5.3-6。根据监测数据分析,项目所在地附近地下水各项因子监测值均能够达到《地下水质量标准》(GB/T14848-2017)中的 III 类标准要求,区域地下水水质相对较好。

	一小小灰皿侧和木	(中以安儿位例	<i>'</i>		
		监测结果			
监测项目	III 类标准限值	W1			
		监测值	标准指数	是否达标	
样品性状	/	无色清液	/	/	
pH 值(无量纲)	6.5~8.5	7.6	0.4	达标	
氨氮(mg/L)	0.5	0.057	0.114	达标	
氟化物(mg/L)	1.0	0.156	0.156	达标	
硝酸盐(mg/L)	20.0	1.90	0.095	达标	

表 5.3-5 地下水水质监测结果(本次委托检测)

溶解性总固体(mg/L)	1000	111	0.111	达标
亚硝酸盐(mg/L)	1.00	< 0.0003	/	达标
耗氧量(mg/L)	3.0	1.0	0.333	达标
硫酸盐(mg/L)	250	27.3	0.109	达标
氯化物 (mg/L)	250	25.6	0.102	达标
六价铬(mg/L)	0.05	< 0.004	/	达标
汞(mg/L)	0.001	< 0.00004	/	达标
砷(mg/L)	0.01	< 0.0003	/	达标
总硬度(mg/L)	450	13.5	0.03	达标
铁(mg/L)	0.3	< 0.03	/	达标
锰(mg/L)	0.10	0.0434	0.434	达标
铅(mg/L)	0.01	< 0.001	/	达标
镉(mg/L)	0.005	< 0.0001	/	达标
挥发酚(mg/L)	0.002	< 0.0003	/	达标
氰化物(mg/L)	0.05	< 0.004	/	达标
总大肠菌群(MPN/100mL)	3.0	<2	/	达标
细菌总数(CFU/100mL)	100	93	0.93	达标
石油类	/	< 0.01	/	/
二甲苯	/	< 0.002	/	/

表 5.3-6 地下水水质监测结果(本次委托检测)

	さ5.5-0 理じ	小小川血		F// 交 1 m	177 183 7		
		监测结果					
上 监测项目	III 类标准限	W2			W3		
	值	监测值	标准指 数	是否达 标	监测值	标准指 数	是否达 标
样品性状	/	无色清 液	/	/	无色清 液	/	/
pH 值(无量纲)	6.5~8.5	7.7	0.47	达标	7.5	0.33	达标
氨氮(mg/L)	0.5	0.046	0.092	达标	0.074	0.148	达标
氟化物(mg/L)	1.0	0.232	0.232	达标	0.284	0.284	达标
硝酸盐(mg/L)	20.0	5.08	0.254	达标	3.71	0.185	达标
溶解性总固体 (mg/L)	1000	120	0.12	达标	124	0.124	达标
亚硝酸盐(mg/L)	1.00	< 0.0003	/	达标	< 0.0003	/	达标
耗氧量(mg/L)	3.0	1.3	0.433	达标	1.3	0.433	达标
硫酸盐(mg/L)	250	0.622	0.002	达标	8.53	0.034	达标
氯化物 (mg/L)	250	34.4	0.137	达标	28.6	0.114	达标
六价铬(mg/L)	0.05	< 0.004	/	达标	< 0.004	/	达标
汞 (mg/L)	0.001	< 0.00004	/	达标	<0.00004	/	达标
砷(mg/L)	0.01	< 0.0003	/	达标	< 0.0003	/	达标
总硬度(mg/L)	450	9.2	0.020	达标	11.9	0.026	达标
铁(mg/L)	0.3	0.0742	0.247	达标	0.0742	0.247	达标

锰(mg/L)	0.10	< 0.01	/	达标	< 0.01	/	达标
铅(mg/L)	0.01	< 0.001	/	达标	< 0.001	/	达标
镉(mg/L)	0.005	< 0.0001	/	达标	< 0.0001	/	达标
挥发酚(mg/L)	0.002	< 0.0003	/	达标	<0.0003	/	达标
氰化物(mg/L)	0.05	< 0.004	/	达标	< 0.004	/	达标
总大肠菌群 (MPN/100mL)	3.0	<2	/	达标	<2	/	达标
细菌总数(CFU/100mL)	100	95	0.95	达标	82	0.82	达标
石油类	/	< 0.01	/	/	< 0.01	/	/
二甲苯	/	< 0.002	/	/	< 0.002	/	/

5.3.3 环境空气质量现状调查与评价

1、环境空气质量达标区域判定

本次项目拟选址位于缙云县新建镇,区域环境空气 $PM_{2.5}$ 、 PM_{10} 、 NO_2 、 SO_2 、CO、 O_3 等常规因子监测数据引用丽水市生态环境局公布的《2022 年丽水市生态环境状况公报》中的监测数据,具体数据结果如下表 5.3-7 所示。

污染物	年评价指标	现状浓度	标准值	占标率(%)	达标情况
PM _{2.5}		20	35	57.1	达标
PM_{10}	年均浓度	32	70	45.7	达标
NO_2	$(\mu g/m^3)$	18	40	45	达标
SO_2		6	60	10	达标
O ₃	第 90 百分位数 (μg/m³)	113	160	70.6	达标
СО	第 95 百分位数 (mg/m³)	1.0	4	25	达标

表 5.3-7 2022 年丽水市区环境空气质量状况统计表(实况)(µg/m³)

根据《2022年丽水市生态环境状况公报》,项目所在区域各污染因子 $PM_{2.5}$ 、 PM_{10} 、 NO_2 、 SO_2 、CO、 O_3 浓度均达到《环境空气质量标准》(GB3095-2012)中的二级标准,所在区域环境空气质量为达标区域。

2、环境空气质量现状监测

为了解和掌握评价区域内环境空气质量现状,本环评委托浙江齐鑫环境监测有限公司补测了 TSP、非甲烷总烃、二甲苯的现状监数据,根据就近的监测数据对本项目所在环境进行评价。

(1) 监测时间及频次

每处点位均连续七日监测; 二甲苯监测小时均值(每天分为四个小时值、每

次不小于 45 分钟), TSP 监测日均值, 非甲烷总烃监测一次值。

(2) 监测点位

见表 5.3-8 和图 5.3.3。

(3) 监测项目

环境空气现状监测点位置及监测项目见表 5.3-8。

表 5.3-8 环境空气现状监测点位置

监测点位	距离	监测项目	监测时间及频次	数据来源
G1 下风向	5	TSP、非甲烷 总烃、二甲苯	2023年9月12日 ~2023年9月18日, 连续监测7天	委托浙江齐鑫环境监测有限公司监测

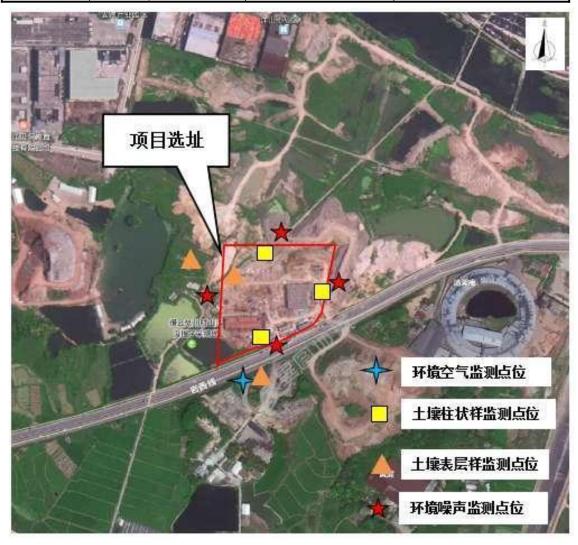


图 5.3.3 大气、噪声、土壤监测点位图

(4) 评价标准

执行《环境空气质量标准》(GB3095-2012)及 2018 年修改单中的二级标

准。

(5) 评价方法

空气环境质量评价采用单因子质量指数法,其为污染物在环境中的实测浓度 C_i 与评价标准允许值 S_i 之比,为一无量纲数,公式如下:

$$I_i=C_i/S_i$$

式中: I:——某评价因子的污染指数;

 C_i ——某评价因子的实测浓度, mg/m^3 ;

Si——某评价因子的环境质量标准值, mg/m3。

(6) 监测及评价结果

根据浙江齐鑫环境监测有限公司提供的监测数据,现状监测数据见下表 5.3-9~5.3-11。

采样日期 二甲苯/ (mg/m³) 检测点位 采样时间 $<1.5\times10^{-3}$ 14:00~15:00 9月11日 $<1.5\times10^{-3}$ 20:00~21:00 2:00~3:00 $<1.5\times10^{-3}$ $<1.5\times10^{-3}$ 8:00~9:00 9月12日 $<1.5\times10^{-3}$ 14:00~15:00 20:00~21:00 $<1.5\times10^{-3}$ 2:00~3:00 $<1.5\times10^{-3}$ $<1.5\times10^{-3}$ 8:00~9:00 厂界下风向 9月13日 14:00~15:00 $<1.5\times10^{-3}$ $<1.5\times10^{-3}$ 20:00~21:00 $<1.5\times10^{-3}$ 2:00~3:00 8:00~9:00 $<1.5\times10^{-3}$ 9月14日 14:00~15:00 $<1.5\times10^{-3}$ $<1.5\times10^{-3}$ 20:00~21:00 $<1.5\times10^{-3}$ 2:00~3:00 9月15日 8:00~9:00 $<1.5\times10^{-3}$

表 5.3-9 现状监测数据-1

检测点位	采样日期	采样时间	二甲苯/(mg/m³)
		14:00~15:00	<1.5×10 ⁻³
		20:00~21:00	<1.5×10 ⁻³
		2:00~3:00	<1.5×10 ⁻³
	9月16日	8:00~9:00	<1.5×10 ⁻³
	9月10日	14:00~15:00	<1.5×10 ⁻³
		20:00~21:00	<1.5×10 ⁻³
		2:00~3:00	<1.5×10 ⁻³
	0 H 17 H	8:00~9:00	<1.5×10 ⁻³
	9月17日	14:00~15:00	<1.5×10 ⁻³
		20:00~21:00	<1.5×10 ⁻³
		2:00~3:00	<1.5×10 ⁻³
		8:00~9:00	<1.5×10 ⁻³

表 5.3-10 现状监测数据-2

检测点位	采样日期	颗粒物/(mg/m³)
	9月11日~12日	0.222
	9月12日~13日	0.206
厂界下风向	9月13日~14日	0.211
	9月14日~15日	0.203
	9月15日~16日	0.218
	9月16日~17日	0.256
	9月17日~18日	0.248

表 5.3-11 现状监测数据-3

检测点位	采样日期	采样时间	非甲烷总烃/(mg/m³)	
	9月12日	7:00~7:01	1.05	
		7:21~7:22	0.78	
		7:43~7:44	0.83	
厂界下风向			7:59~8:00	1.08
		7:02~7:03	1.00	
		7:25~7:26	1.37	

检测点位	采样日期	采样时间	非甲烷总烃/(mg/m³)
		7:45~7:46	1.11
		8:00~8:01	1.18
		7:00~7:01	1.15
	0 日 14 日	7:19~7:20	1.12
	9月14日	7:39~7:40	0.90
		7:59~8:00	0.85
		7:00~7:01	0.78
	9月15日	7:19~7:20	0.68
	9月13日	7:39~7:40	0.31
		7:59~8:00	0.63
		15:20~15:21	0.37
	9月16日	15:40~15:41	1.23
	9 / 10	15:50~15:51	1.17
		15:59~16:00	1.09
		15:20~15:21	1.21
	9月17日	15:30~15:31	0.94
	9月17日	15:40~15:41	0.96
		15:58~15:59	0.93
		15:20~15:21	1.05
	0 H 10 □	15:42~15:43	0.93
	9月18日	15:58~15:59	1.01
		16:10~16:11	0.98

根据浙江齐鑫环境监测有限公司提供的监测数据,监测结果汇总见下表 4.3-11。

表 4.3-11 污染物环境质量现状(监测结果)表 (浓度单位: mg/m³)

监测点	监测点坐标	污染物	平均时间	评价 标准	监测浓度 范围	最大浓 度 占标率	超标 率 (%)	达标情 况
C1	120.037297,	非甲烷总烃	一次值	2.0	0.31~1.37	68.5%	0	达标
G1	28.718499	二甲苯	小时平均	0.2	<1.5×10 ⁻³	/	0	达标

TSP 日平均 0.3 0.203~0.256 85.3% 0 达标
--

由上表可知,项目各监测点 TSP、二甲苯、非甲烷总烃监测值均达到相应标准限值。

5.3.4 声环境质量现状调查与评价

为了解本项目所在地声环境质量现状,本环评委托浙江齐鑫环境检测有限公司对项目建设地声环境现状监测数据。

- (1) 监测项目: Leq (dB(A))。
- (2) 监测方法:《声环境质量标准》(GB3096-2008)及《环境监测技术规范》(噪声部分)。
- (3) 监测设备: AWA5610D 型积分声级计,测量前后均经校正,前后两次校正灵敏度之差小于 0.5dB(A),测量时传声器加装防风罩。
 - (4) 监测时间: 2023年9月12日及2023年9月13日
- (5) 监测频次:每个布点昼间、夜间各监测一次,每次监测 10min。监测期间天气符合测量要求。
 - (6) 监测布点: 共4个监测点。
 - (7) 监测结果: 见表 5.3-12。
- (8)评价标准:项目所在区域执行《声环境质量标准》(GB3096-2008)3 类标准,南侧临岩西公路执行4a类标准。

表 5.3-12 区域声环境现状监测结果(单位: dB(A))

检测日期	9月	12 日	9月	月 13 日	标准值		
松湖 上		测量值 Leq	[dB(A)]		//NE 匝		
检测点位	昼间	夜间	昼间	夜间	昼间	夜间	
厂界东侧	62.4	48.5	63.1	48.9	65	55	
厂界南侧	60.3	48.8	60.5	48.5	70	55	
厂界西侧	57.8	47.1	58.8	47.4	65	55	
厂界北侧	57.1	45.9	59.8	46.2	65	55	
检测环境条件情况	风速: 1.0m/s	天气状况: 晴	风速: 0.9m/s	天气状况: 晴	检测地点(实验 室内/外)	实验室	

由表 5.3-12 可知, 厂界东、西、北侧昼间、夜间噪声监测值低于《声环境质

量标准》(GB3096-2008)中 3 类标准限值, 南侧低于 4a 类标准, 声环境质量现状良好。

5.3.5 土壤环境质量现状监测与评价

5.3.5.1 土壤类型

1、区域土壤类型

根据缙云县第二次土壤普查工作结果,全县主要有红壤、黄壤、岩性土、潮土和水稻土等 5 个土类,11 个亚类,36 个土属,69 个土种。土壤总面积约 217.6 万亩,以红壤土类分布最广,占总面积的 61.5%,黄壤占 21.5%,岩性土占 4.0%,潮土占 0.9%,水稻土占 12.1%。县域自然土壤垂直分布较明显,大约在海拔 700m 左右是黄壤与红壤两大土类的分界线。其中黄壤分布于 700m 以上的低、中山;红壤分布于海拔 700m 以下的丘陵地;岩性土分布于盆地中低丘上;潮土分布于河漫滩地、山口洪积扇等;水稻土分布于黄壤带梯田、低山丘陵梯田、洪积扇前缘和顶部、溪流两岸等。山地土壤的成土母质种类主要有酸性岩浆岩,包括凝灰岩、花岗岩。

2、项目厂址土壤类型

项目厂区土壤类型查阅"国家土壤信息服务平台"。本项目厂址位于缙云县新建镇,根据查询结果,项目厂址土壤类型为渗育水稻土。根据《中国土壤分类与代码》(GB/T17296-2009),其土纲为 L 人为土,土亚纲为 L1 人为水成土,土类为 L11 水稻土,现已建成工业区,土地利用性质为工业用地。

5.3.5.2 土壤环境质量现状调查

为了解项目所在地区域土壤环境质量现状,本环评委托必维达诚(浙江)检测技术服务有限公司对项目所在区土壤环境质量现状监测数据,具体监测情况如下:

1、监测项目

具体见表 5.3-14。

2、采样时间和频次

2023年9月21日采样一次。

3、监测布点

占地范围内 3 个柱状样、1 个表层样,场地外 2 个表层样,具体见表 5.3-13,

图 5.3.3。

4、监测及评价结果

土壤理化特性调查表见表 5.3-13, 土壤监测及评价结果见表 5.3-15~5.3-18。

表 5.3-13 土壤理化特性调查表

	上口		广山丰田兴 1	□ bl ≠ □ ₩ 1
	点号		厂内表层样 1	厂外表层样 1
	采样日期		2023年9月21日	2023年9月21日
	检测日期		2023年9月21日	2023年9月21日
	样品编号		T230921Bc011a	T230921Bc051a
J	昙次	m	0-0.5m	0-0.5m
	颜色	/	棕色	棕色
TG 17	结构	/	片状	片状
现场记录	质地	/	砂壤土	砂壤土
	砂砾含量	%	3	1
	其他异物	/	无	无
	PH	值	8.04	7.98
	渗透率(r	mm/min)	0.136	0.343
实验室	容重(٤	g/cm ³)	1.07	1.32
测定	总孔隙原	度(%)	26.9	30.9
	氧化还原电	L位 (mV)	191	192
	阳离子交换	量(cmol+/L)	19.3	22.9

表 5.3-14 土壤监测点位布局情况一览表

序号	点位编号	样品编号	取样土层	经纬度	位置描述	检测因子	采样时间
1		T230921Bc021a	0-0.5			"GB36600—2018"中表 1 的 45 项基本项目+PH+石油类	
2	1A01	T230921Bc021b	1.5-2	120°2′15.447, 28°43′7.171	综合楼附近	"GB36600—2018"中表 1 的 45 项基本项目+PH+石油类	2023.9.21
3		T230921Bc021c	2.5-3	20 43 7.171		"GB36600—2018"中表 1 的 45 项基本项目+PH+石油类	
4		T230921Bc031a	0-0.5			"GB36600—2018"中表 1 的 45 项基本项目+PH+石油类	
5	1A02	T230921Bc031b	1.5-2	120°2′17.765, 28°43′9.610	2#厂房东侧附近	"GB36600—2018"中表 1 的 45 项基本项目+PH+石油类	
6		T230921Bc031c	2.5-3	20 43 7.010		"GB36600—2018"中表 1 的 45 项基本项目+PH+石油类	2023.9.21
7		T230921Bc041a	0-0.5		1#厂房北侧附近	"GB36600—2018"中表 1 的 45 项基本项目+PH+石油类	2023.9.21
8	1A03	T230921Bc041b	1.5-2	120°2′14.520, 28°43′10.474		"GB36600—2018"中表 1 的 45 项基本项目+PH+石油类	
9		T230921Bc041c	2.5-3	20 13 10.171		"GB36600—2018"中表 1 的 45 项基本项目+PH+石油类	
10	1D01	T230921Bc011a	0-0.5	120°2′12.357, 28°43′9.136	2#厂房西侧	"GB36600—2018"中表 1 的 45 项基本项目+PH+石油类、理化特性	2023.9.21
11	1D02	T230921Bc051a	0-0.5	120°2′10.870, 28°43′10.355	场地外西侧	"GB36600—2018"中表 1 的 45 项基本项目+PH+石油类、理化特性	2023.9.21
12	1D03	T230921Bc061a	0-0.5	120°2′14.752, 28°43′5.342	场地外南侧	"GB36600—2018"中表 1 的 45 项基本项目+PH+石油类	2023.9.21

表 5.3-15 土壤环境质量现状监测结果一览表-1 (单位: mg/kg)

序号	采样地点(编号)	项目名称 性状描述	铜	镍	镉	铅	总砷	总汞	氯甲烷	氯乙烯	1,1-二氯 乙烯
	1# (0-0.5m)	棕色、砂壤土、干	9	11	0.44	41.2	6.80	0.046	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³
01	1# (1.5-2m)	棕色、砂壤土、干	5	9	0.34	50.3	7.25	0.040	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³
	1# (2.5-3.0m)	棕色、砂壤土、潮	13	11	0.42	43.0	6.60	0.062	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³
	2# (0-0.5m)	棕色、砂壤土、干	8	9	0.17	36.6	4.08	0.040	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³
02	2# (1.5-2m)	棕色、砂壤土、潮	8	8	0.15	32.8	3.93	0.034	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³
	2# (2.5-3.0m)	棕色、砂壤土、潮	3	7	0.27	26.5	5.94	0.035	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³
	3# (0-0.5m)	棕色、砂壤土、干	7	4	0.25	29.0	5.85	0.039	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³
03	3# (1.5-2m)	棕色、砂壤土、潮	6	13	0.21	27.1	5.10	0.078	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³
	3# (2.5-3.0m)	棕色、砂壤土、潮	12	11	0.22	22.0	6.89	0.032	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³
04	4# (0-0.5m)	棕灰色、砂壤土、干	22	11	0.41	43.2	8.46	0.050	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³
05	5# (0-0.5m)	棕灰色、砂壤土、干	8	15	0.27	41.9	7.08	0.106	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³
06	6# (0-0.5m)	棕灰色、砂壤土、干	9	12	0.06	32.9	6.91	0.034	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³
	评价标准		18000	900	65	800	60	38	37	0.43	66
	是否达标		达标	达标	达标	达标	达标	达标	达标	达标	达标

表 5.3-16 土壤环境质量现状监测结果一览表-2 (单位: mg/kg)

序号	采样地点(编 号)	项目名称 性状描述	二氯甲烷	反-1,2-二氯乙烯	1,1-二氯 乙烷	顺-1,2-二氯乙烯	氯仿	1,2-二氯 乙烷	1,1,1-三氯乙烷	四氯化碳	苯
01	1# (0-0.5m)	棕色、砂壤土、干	<1.5×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.1×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.9×10 ⁻³
	1# (1.5-2m)	棕色、砂壤土、干	<1.5×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.1×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.9×10 ⁻³

	1# (2.5-3.0m)	棕色、砂壤土、潮	<1.5×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.1×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.9×10 ⁻³
	2# (0-0.5m)	棕色、砂壤土、干	<1.5×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.1×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.9×10 ⁻³
02	2# (1.5-2m)	棕色、砂壤土、潮	<1.5×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.1×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.9×10 ⁻³
	2# (2.5-3.0m)	棕色、砂壤土、潮	<1.5×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.1×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.9×10 ⁻³
	3# (0-0.5m)	棕色、砂壤土、干	<1.5×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.1×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.9×10 ⁻³
03	3# (1.5-2m)	棕色、砂壤土、潮	<1.5×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.1×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.9×10 ⁻³
	3# (2.5-3.0m)	棕色、砂壤土、潮	<1.5×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.1×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.9×10 ⁻³
04	4# (0-0.5m)	棕灰色、砂壤土、干	<1.5×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.1×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.9×10 ⁻³
05	5# (0-0.5m)	棕灰色、砂壤土、干	<1.5×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.1×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.9×10 ⁻³
06	6# (0-0.5m)	棕灰色、砂壤土、干	<1.5×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.1×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.9×10 ⁻³
	评价标		616	54	9	596	0.9	5	840	2.8	4
	是否定	达标	达标	达标	达标	达标	达标	达标	达标	达标	达标

表 5.3-17 土壤环境质量现状监测结果一览表-3 (单位: mg/kg)

序号	采样地点(编 号)	项目名称 性状描述	1,2-二氯 丙烷	三氯乙烯	1,1,2-三氯乙烷	甲苯	四氯乙烯	1,1,1,2-四氯乙烷	氯苯	乙苯	间,对-二甲苯
	1# (0-0.5m)	棕色、砂壤土、干	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³
01	1# (1.5-2m)	棕色、砂壤土、干	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³
	1# (2.5-3.0m)	棕色、砂壤土、潮	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³
	2# (0-0.5m)	棕色、砂壤土、干	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³
02	2# (1.5-2m)	棕色、砂壤土、潮	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³
	2# (2.5-3.0m)	棕色、砂壤土、潮	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³
03	3# (0-0.5m)	棕色、砂壤土、干	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³
	3# (1.5-2m)	棕色、砂壤土、潮	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³

	3# (2.5-3.0m)	棕色、砂壤土、潮	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³
04	4# (0-0.5m)	棕灰色、砂壤土、干	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³
05	5# (0-0.5m)	棕灰色、砂壤土、干	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³
06	06 6# (0-0.5m) 棕灰色、砂壤土、干		<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.3×10 ⁻³	<1.4×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³
	评价标准			2.8	2.8	1200	53	10	270	28	570
	是否达标			达标							

表 5.3-18 土壤环境质量现状监测结果一览表-4 (单位: mg/kg)

		项目名称									
序号	采样地点(编号)		苯乙烯	1,1,2,2-四氯乙烷	邻-二甲苯	1,2,3-三氯丙烷	1,4-二氯苯	1,2-二氯苯	2-氯酚	硝基苯	萘
		性状描述									
	1# (0-0.5m)	棕色、砂壤土、干	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	< 0.06	< 0.09	< 0.09
01	1# (1.5-2m)	棕色、砂壤土、干	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	< 0.06	< 0.09	< 0.09
	1# (2.5-3.0m)	棕色、砂壤土、潮	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	< 0.06	< 0.09	< 0.09
	2# (0-0.5m)	棕色、砂壤土、干	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	< 0.06	< 0.09	< 0.09
02	2# (1.5-2m)	棕色、砂壤土、潮	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	< 0.06	< 0.09	< 0.09
	2# (2.5-3.0m)	棕色、砂壤土、潮	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	< 0.06	< 0.09	< 0.09
	3# (0-0.5m)	棕色、砂壤土、干	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	< 0.06	< 0.09	< 0.09
03	3# (1.5-2m)	棕色、砂壤土、潮	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	< 0.06	< 0.09	< 0.09
	3# (2.5-3.0m)	棕色、砂壤土、潮	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	< 0.06	< 0.09	< 0.09
04	4# (0-0.5m)	棕灰色、砂壤土、干	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	< 0.06	< 0.09	< 0.09
05	5# (0-0.5m)	棕灰色、砂壤土、干	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	< 0.06	< 0.09	< 0.09
06	6# (0-0.5m)	棕灰色、砂壤土、干	<1.1×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	< 0.06	< 0.09	< 0.09
	评价标	· · · · · · · · · · · · · · · · · · · ·	1290	6.8	640	0.5	20	560	2256	76	70

是否达标			达标		达标	达标	ì	达标 :	达标 克	达标	达标	达标	达标
			表 5.3-19	土壤环	「境质量现	状监测结身	果一览表-5	(单位: mg/	kg)				
序号	采样地点(编号)	项目名称 性状描述	苯并(a)蒽	崫	苯并(b) 荧蒽	苯并(k) 荧蒽	苯并(a)芘	茚并(1,2,3-cd) 芘	二苯并(a,h)蒽	六价铬	苯胺	pH值 (无量 纲)	石油烃 (C ₁₀ -C ₄₀)
01	1# (0-0.5m)	棕色、砂壤土、干	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.08	7.58	114
	1# (1.5-2m)	棕色、砂壤土、干	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.08	7.22	90
	1# (2.5-3.0m)	棕色、砂壤土、潮	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.08	7.33	86
02	2# (0-0.5m)	棕色、砂壤土、干	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.08	7.02	90
	2# (1.5-2m)	棕色、砂壤土、潮	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.08	7.08	52
	2# (2.5-3.0m)	棕色、砂壤土、潮	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	<0.08 7.02 <0.08 7.03 <0.08 7.32 <0.08 7.43	7.32	96
	3# (0-0.5m)	棕色、砂壤土、干	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.08	7.45	56
03	3# (1.5-2m)	棕色、砂壤土、潮	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.08	7.47	60
	3# (2.5-3.0m)	棕色、砂壤土、潮	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.08	8.10	67
04	4# (0-0.5m)	棕灰色、砂壤土、干	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.08	8.04	123
05	5# (0-0.5m)	棕灰色、砂壤土、干	< 0.1	< 0.1	< 0.2	<0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.08	7.98	87
06	6# (0-0.5m)	棕灰色、砂壤土、干	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.08	6.68	74
评价标准			15	1293	15	151	1.5	15	1.5	5.7	260	/	4500
是否达标			达标	达标	达标	达标	达标	达标	达标	达标	达标	达标	达标

由表 4.3-12~4.3-15 检测结果可知,本项目场地内、场地外各监测点位、各监测指标均低于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值标准限值,石油烃可满足《上海市建设用地土壤污染状况调查、风险评估、管控与修复方案编制、风险管控要修复效果工作的补充规范》中相应标准;土壤环境现状质量良好。

5.3.6 生态环境质量现状评价

1、动植被分布

(1) 植被

缙云县属中亚热带常绿阔叶林北部—亚热带浙闽山丘甜槠木荷林区。植物资源丰富,经初步调查,种子植物有 136 科 540 属 1126 种,其中属国家级重点保护珍稀植物有 18 种。本县地带性植物群落为常绿阔叶林,亚热带针叶林是本县目前分布最广的森林群落,约占全县森林面积的 90%; 林业用地面积占国土总面积的 77.9%。

自然林带分布,海拔由低到高,一般为常绿阔叶林,落叶阔叶林和针叶林混交,针叶林,荒山灌木草丛。常绿阔叶林主要为甜楮、木荷林、青冈林荷木,苦楮林等。针阔混交林有黄山松常绿阔叶混交林,马尾松常绿阔叶混交林,黄山松落叶阔叶混交林,马尾松落叶阔叶混交林,4个系,主要分布在中山区,低山丘陵亦有分布。

针叶林分布最为广泛,约占全街道森林面积 90%,有黄山松、马尾松、极树、柳树 4 个群系。其中马尾松分布最广。

植被演替,最初阶段为苦楮、木荷、青冈、白栎等常绿阔叶乔木林中萌生灌木丛,生态恶化,即灌木丛中出现槭木、乌饭等树种,进而退化为灌木草丛结合群落,最后完全由草丛替代。进展演替:排除人为干扰,二三十年可使草丛恢复为次生乔木林。木荷、白栎,白栎乔木林萌生灌丛状态,只需封山数年即可恢复成林。灌木林在自然环境下,首先出现的是杉树,马尾松,随后逐渐成林。

(2) 动物

缙云县动物资源丰富,初步统计有国家重点保护动物一类 4 种,豹、云豹、黄腹角雉;二类 19 种。鱼纲有 2 目,6 种,17 种。两栖纲 2 目,8 科,10 属,

21 种。爬行纲 3 目,8 科,19 属,30 种。鸟纲 13 目,34 科,60 属,76 种。哺乳纲 8 目,17 科,34 属,37 种。蛛形纲 1 目,13 科,30 属,55 种。昆虫纲 12 目,93 科,368 属,700 种。

蛛形纲和昆虫纲分布最为广泛,从海拔 110 米至 700 米的不同程度,均有不同种类,种群存在,其中有益昆虫 336 种,占总数 44%。

2、生态环境现状总体评价

项目所在地生态系统类型主要包括农田生态系统、林地生态系统、灌草生态系统、人工建筑及道路等人工生态系统。近年来,由于工业开发和城镇建设的飞速发展,致使人工建筑及交通道路等人工生态系统呈带状或面状分布。

项目所在区域内无国家重点保护植物的群落分布地和国家级保护的珍稀植物和古树、名木分布,未发现受国家保护的野生动物。

生态环境敏感性主要为水环境污染轻度敏感,酸雨、土壤侵蚀不敏感、低敏感,地质灾害低、不易发区。

5.4 周边污染源调查

根据现场调查及查阅相关资料,项目拟建地周边主要污染物源情况见下表5.4-1。

序 号	企业名称	方位	红线之间 距离(m)	主要产品	主要污染物			
1	恒生轮毂有限 公司(在建)	北侧	相邻		废水	生活污水、生产废水		
				轮毂	废气	颗粒物等		
					噪声	机械噪声		
					固废	一般固废、危险废物		
	浙江盛羽体育 用品有限公司 (在建)	北侧	相邻		废水	生活污水、生产废水		
2				羽毛球	废气	非甲烷总烃、颗粒物等		
					噪声	机械噪声		
					固废	一般固废、危险废物		

表 5.4-1 项目周边污染源调查情况一览表

6环境影响预测与评价

6.1 施工期环境影响预测与评价

施工期主要污染因子有工地扬尘、施工废水、生活污水、建筑垃圾、生活垃圾和施工噪声等。

6.1.1 施工期水环境影响预测与分析

施工期的废水来源有以下两部分:一是工程建筑施工产生的施工废水,主要含泥砂等,悬浮物浓度较高,pH值呈弱碱性,并带有少量的油污;二是施工人员产生的生活污水,主要含COD_{Cr}、SS等。

施工废水要进行截流后集中处理,否则将会把施工区块的泥沙带入到水体环境中。

(1) 施工废水

施工废水中主要污染物为砂、土等悬浮物,由于废水 SS 浓度较高,为保证周围河道的水质,采用沉淀池进行处理,工艺流程如下:

施工废水经沉淀池处理达标上清水回用或用于施工场地洒水扬尘。沉淀池一般使用 10~15 天后需进行沉渣清运,清运时停止进水,用泵抽排池内积水,再人工清除池内沉渣,清出的沉渣与其余施工弃渣一并运至附近低洼地综合利用。

(2) 施工人员废水

施工人员日常生活排放的生活废水,若处置不当,会对附近的水体造成污染,故应管理好施工人员生活污水的排放,可设置临时厕所,废水经化粪池处理后纳管排放,对环境影响可接受。

施工期间,施工单位应严格执行《建设工程施工场地文明施工及环境管理暂行规定》,对施工污水的排放进行组织设计,严禁乱排、乱流污染施工场地。施工时产生的泥浆水及冲孔、钻孔产生的泥浆未经处理不得随意堆放,建筑施工过过程中,设置截水沟渠,严禁施工废水未经处理直接排入附近水体。当施工完毕后,立即清除施工现场周边的建筑垃圾,即会消除污染影响。工地的污染防治工作,要有专人分工负责,提高污染防治效果,防止或缓解对环境的污染。建设单

位必须加强工地管理工作,对施工人员除进行安全生产教育外,还应加强环保教育,提高全体施工人员环保意识,共同搞好工地环保工作。

在此基础上,本项目施工期间所产生的废水对周围环境影响不大。

6.1.2 施工期大气环境影响预测与分析

施工阶段,对大气环境的污染主要来自施工工地扬尘、施工车辆尾气和油漆挥发废气。

(1) 车辆行驶扬尘

根据调查,在同样路面清洁情况下,车速越快,扬尘量越大;而在同样车速情况下,路面清洁度越差,则扬尘量越大。根据类比调查,一般情况下,施工场地在自然风作用下产生的扬尘影响的范围在 100m 以内。

抑制扬尘的一个简洁有效的措施是洒水。如果在施工期内对车辆行驶的路面 实施洒水抑尘,每天洒水 4~5 次,可使扬尘减少 70%左右。表 6.1-1 为施工场地 洒水抑尘的试验结果。由该表数据可看出对施工场地实施每天洒水 4~5 次进行抑 尘,可有效地控制施工扬尘,并可将 TSP 污染距离缩小到 20~50m 范围。

距离		5m	20m	50m	100m
TSP 小时平均浓度	不洒水	10.14	2.89	1.15	0.86
(mg/m^3)	洒水	2.01	1.40	0.67	0.60

表 6.1-1 施工场地洒水抑尘试验结果

(2) 堆场扬尘

粉尘的沉降速度随粒径的增大而迅速增大。当粒径为 250 微米时,沉降速度为 1.005m/s,因此可以认为当尘粒大于 250 微米时,主要影响范围在扬尘点下风向近距离范围内,而真正对外环境产生影响的是一些微小粒径的粉尘。

为尽可能减少本项目施工期间的扬尘对周围环境的污染影响,施工期间应当积极采取抑尘措施。要求施工过程应当加强管理,实施标准化施工,限制建筑材料运输车辆的车速;装卸黄沙、水泥等的一些易起尘作业应避免在大风天气作业;对运输道路应当定期清扫、保持路面清洁;运输车辆应采取防洒落措施,防止土石方、建筑材料洒落在运输道路上而产生二次污染;合理安排易起尘建材的堆放场地,加盖蓬布或实行库内堆放;施工场地应定期洒水,对于粉尘产生量较大的部位采用洒水降尘;采用商品混凝土建房。在采取以上防治措施的情况下,施工期的扬尘将能够得到有效控制,对周围环境的影响不大。

(3) 车辆废气

施工场地周边交通较为方便,施工车辆进出场地较快,行驶时间较短,且周边比较空旷,汽车进出时汽油燃烧较为充分,车辆行驶废气发生量较少,对周围环境基本无影响。

(4)油漆废气

由于油漆废气的释放较缓慢,不会一次性排放,且周边比较空旷,产生的油漆废气对周围环境基本不会带来明显的影响。

6.1.3 施工期声环境影响预测与分析

施工期噪声可分为机械噪声、施工作业噪声和交通噪声。机械噪声主要指施工机械造成如挖土机械、混凝土搅拌机、混凝土振捣棒、空压机产生的噪声;施工作业噪声主要指一些零星的敲打声、装卸车辆的撞击声等,多为瞬间噪声;交通噪声主要为运输车辆行驶噪声。在这些施工噪声中对声环境影响最大的是机械噪声,往往施工作业噪声比较容易造成纠纷。施工噪声贯穿于施工的全过程,噪声具有突发性、无规则、不连续、高强度等特点。

1、施工噪声预测模式及结果

鉴于施工噪声的复杂性,以及施工噪声影响的区域性和阶段性,本报告书根据《建筑施工场界环境噪声排放标准》(GB12523-2011),针对施工阶段计算出不同施工设备的噪声污染范围,以便施工单位施工时结合实际情况采取适当的噪声污染防治措施。

单台施工机械噪声随距离的衰减计算公式如下:

-------------预测点噪声级;

- ▶ 预测点到噪声源的距离:
- "---参照基准点到噪声源的距离:
- ---空气吸收附加衰减系数;

10dB_o

根据表 4.2-4 主要施工机械设备的噪声源强和单台施工机械设备衰减预测公式,得出此类机械设备的噪声随距离的衰减情况见表 6.1-2。

实际施工噪声为多台机械设备同时施工运行时叠加而成,根据对单台机械设备的源强及实际噪声叠加分析,噪声的衰减距离及最大增加值详见表 6.1-3。

表6.1-2 单台施工机械设备噪声衰减距离

单位: m

序号	施工机械			声 级	(dB)		
万分	加工力机機	50	55	60	65	70	75
1	挖掘机	338	190	120	75	40	22
2	混凝土振捣器	355	200	110	66	37	21
3	升降机	142	80	44	25	14	8
4	铲土机	266	150	84	47	26	15
5	自卸卡车	150	84	47	26	15	/
6	混凝土输送泵	177	100	56	31	17	10
7	空压机	126	70	40	22	12	7

表6.1-3 组合声级衰减距离

单位: m

	项目	声级(dB)								
	45	50	55	60	65	70	75			
7事/公丁和	单台机械(90dB)衰减距离	265	200	145	100	66	43	25		
建筑工程 工程	多台机械(93dB)衰减距离	310	240	180	125	85	55	35		
/ <u>↓</u> /注	衰减距离增加量	45	40	35	25	19	12	10		
	单辆车辆(86dB)衰减距离	215	155	110	75	47	29	17		
车辆运输	多辆车辆(89dB)衰减距离	249	185	135	93	61	38	22		
	衰减距离增加量	34	30	25	18	14	9	5		

2、施工噪声影响分析

(1) 建筑工程

多台机械设备施工噪声的昼间最大影响距离(噪声限值按 55dB 计)为 180m, 夜间的最大影响距离(噪声限值按 45dB 计)为 310m。

根据现状调查,项目施工现场周边 500m 范围内有村庄等敏感目标,要求建设单位加强施工期的噪声污染防治,建立施工围墙,合理安排施工时间,加强与周边敏感点的联系;因此,施工期间施工噪声对附近村庄的影响不大。

(2) 车辆运输噪声

根据表 6.1-3, 多辆车辆运输噪声的昼间最大影响距离(噪声限值按 60dB 计) 为 93m, 夜间的最大影响距离(噪声限值按 50dB 计) 为 135m。项目位于工业

区,厂区直通城市主干道(岩西公路),且项目建设规模不大,运输车辆较少,只要运输过程中按要求控制车速,禁鸣喇叭,运输过程一般不会对声环境造成大的影响。

6.1.4 施工期固体废弃物环境影响预测与分析

生活垃圾:施工队的生活垃圾要收集到指定的垃圾箱(筒)内,由环卫部门 拉运后统一处理。

建筑施工垃圾:施工期间需运输各种建筑材料(如砂石、水泥、砖等),运输过程会有散落;项目完工后,会有不少废建筑材料。项目施工期外运建筑垃圾均为普通固体废物,不含有毒有害成分,应首先考虑用于市政与规划部门指定的建设工程基础填方、洼地填筑时进行消纳。剩余建筑垃圾不得随意堆弃,均运往指定的弃土场。建设单位应要求施工单位规范运输,不要随路散落,也不要随意倾倒建筑垃圾,制造新的垃圾堆场。建筑垃圾处置不当,会由于扬尘、雨水冲淋等原因,引起大气环境和水环境的二次污染,会对周围环境产生不利影响。

综上所述,各固废妥善处置对周围环境影响不大。

6.1.5 施工期生态环境影响预测与分析

(1) 水土流失影响分析

通过对项目区域地形地貌、地质、土壤、植被以及工程施工方式等的分析, 本工程可能造成的水土流失危害主要表现在以下几个方面:

1)对工程本身安全的影响

工程施工期间,场地造型、基础施工等土石方工程会形成较多的松散堆积物和裸露地表、边坡,如遇暴雨,地面将会形成高含沙水流,如不加以疏导和防治,严重时会冲毁施工设施,影响到主体工程的安全;

2) 影响水质,致使水环境恶化

项目施工流失的水土如果进入河道,将使土壤中的营养元素一起进入河道, 使河道水质浑浊,富营养化指标上升,造成水环境恶化。

3) 破坏景观,影响生态环境

项目开发建设引起的地表扰动,土石方挖填产生的水土流失等,使原有的自然景观被施工场地和工程建设机械所替代,流失水土还会影响周围自然景观,对环境造成一定的影响和破坏。

建设单位要严格落实项目水土保持方案中要求的防治措施,将水土流失影响降至最低。

(2) 生态景观

各种施工活动包括土石方工程、道路平整、施工机械活动、材料堆积、临时占地等均将破坏地表植被。

项目施工过程中,施工地带中的现有植被将受到破坏,根据现场调查,项目 区域范围内绿色作物主要为乔木、低矮灌木、杂草等,在评价范围内没有古树名 木。项目完工后,将在区域内实施绿化工程,绿化带的建设可在一定程度上补偿 因施工破坏的原有植被,也具有景观改造、优化环境质量的作用。

项目工程区基本在工业园区内,人为活动频繁,不存在大型的动物,因此,只有地表及地下浅层的小型动物受到损失,工程建设对动物生境影响较小。

6.2 营运期环境影响分析

6.2.1 营运期地表水环境影响分析

根据前述工程分析,本项目排放的废水有喷漆水帘机废水、水喷淋塔废水、 批灰打磨除尘水帘机废水和职工生活污水。生产排放总量为11550t/a,生活污水 排放总量为6000t/a。

项目设置一套 50t/d 的废水处理系统,采用"芬顿+絮凝沉淀+气浮"等处理工艺,生产废水全部进入废水处理设施处理达标后排放。

1、地表水环境影响评价等级及简析

本项目将实行雨污分流制、清污分流制。雨水经收集排至雨水管网。各股废水需经预处理达纳管标准后纳入缙云县第三污水处理厂,经处理达标后排入好溪,由于项目废水不直接排入附近地表水体。根据《环境影响评价技术导则 地表水环境》(HJ 2.3-2018),废水排放方式为间接排放,评价等级为三级 B,可不进行水环境影响预测,主要分析水污染控制和水环境影响减缓措施有效性评价和依托污水处理设施的环境可行性评价。

2、项目水污染控制和水环境影响减缓措施有效性评价

项目全厂排水采取雨污分流的形式,生活废水经化粪池/隔油池处理后纳入市政污水管网;雨水经收集排至雨水管网;喷漆水帘机废水、水喷淋塔废水、批灰打磨除尘水帘机废水全部进入厂区专门设计的污水处理设施处理,处理量约为

50t/d。根据建设单位提供的污水工程设计方案,污水处理工艺采用"芬顿+絮凝沉淀+气浮"的处理工艺,废水经预处理后出水可达到《污水综合排放标准》(GB8978-1996)中三级标准后纳工业区污水管网。

综上,项目废水经预处理达标后进入缙云县缙云县第三污水处理厂统一处理,缙云县第三污水处理厂出水水质 COD_{Cr}、TN 指标执行浙江省《城镇污水处理厂主要水污染物排放标准》(DB33/2169-2018)中新建城镇污水处理厂主要水污染物排放限值,NH₃-N、TP 指标排放达到《地表水环境质量标准》(GB3838-2002)III 类标准,其它指标执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准。项目废水不会直接进入周边河道,故不会对项目附近河道水质带来明显不利影响。

3、依托污水处理设施的环境可行性评价

项目所在地已具备废水纳管条件,污水管网通至缙云县第三污水处理厂。根据调查,浙江省生态环境厅-浙江省污染源自动监控信息管理平台近期公布监督性监测数据见下表。

序号	рН	COD _{Cr} (mg/L)	氨氮(mg/L)	总磷(mg/L)	总氮(mg/L)	废水瞬时流 量(L/s)
2023-10-09	7.69	11.74	0.01	0.0306	7.627	68.82
2023-10-08	7.72	18.71	0.0501	0.0658	6.796	72.47
2023-10-07	7.65	23.96	0.01	0.0296	7.241	76.4
2023-10-06	7.59	20.68	0.01	0.0379	6.889	64.09
2023-10-05	7.58	18.52	0.01	0.0659	6.587	55.77
2023-10-04	7.55	16.08	0.01	0.0691	6.422	65.48
2023-10-03	7.5	17.24	0.01	0.0787	6.525	66.34
标准值	6~9	30	1.0	0.2	10(12)	1万 t/d
是否达标	达标	达标	达标	达标	达标	达标

表 6.2-1 污水处理厂出水水质排放情况一览表

由上表可知,缙云县第三污水处理厂目前运行稳定,出水水质能稳定持续的达到标准,其中缙云县第三污水处理厂出水 COD_{Cr}、TN 指标能达到《城镇污水处理厂主要水污染物排放标准》(DB33/2169-2018)中新建城镇污水处理厂主要水污染物排放限值,NH₃-N、TP 指标能达到《地表水环境质量标准》(GB3838-2002)III 类标准,其它指标能达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准,废水处理量约在 4819~6600t/d,缙云县第三污水处理厂工程规模为 1 万 t/d,尚有余量可容纳本项目废水。

本项目新增废水排放量约 58.5m³/d,小于缙云县第三污水处理厂剩余可处理量,本次项目实施后不会对缙云县第三污水处理厂的运行造成压力。项目废水预处理达到《污水综合排放标准》(GB8978-1996)中三级标准满足缙云县第三污水处理厂纳管水质要求。

项目废水最终经缙云县第三污水处理厂处理达《城镇污水处理厂污染物综合排放标准》(GB18910-2002)一级 A 标准、《城镇污水处理厂主要水污染物排放标准》(DB33/2169-2018)和《地表水环境质量标准》(GB3838-2002)III 类标准后排放。各污染物排放浓度为 COD_{Cr}30mg/L, NH₃-N1mg/L, 则污染物排放量为 COD_{Cr}0.527t/a, NH₃-N0.018t/a。

4、废水排放基本情况分析

根据上述分析及厂区布局,对照《排污许可证申请与核发技术规范 家具制造》(HJ 1027-2019)中相关规定,项目废水排放基本情况见表 6.2-2~表 6.2-4 所示。

	1	文川四 月 フレーフ	也仅					
) ²	5染治理设施	包			
废水 类别	污染物种类	排放 去向	污染治 理设施 编号	污染治 理设施 名称	污染治 理设施 工艺	排放口 编号	排放 方式	排放口 类型
生活废水	pH 值、化学需 氧量、五日生 化需氧量、氨 氮、悬浮物	进缙县三	TW001	生活污 水处理 设施	化粪池/隔油池	DW001	间接排放	一般排放口
生产废水	pH 值、化学需 氧量、氨氮、 悬浮物	水处理厂	TW002	污水处 理站	芬顿、絮 凝沉淀、 气浮		11年70人	双口

表 6.2-2 废水排放及污染治理设施情况一览表

表 6.2-3	废水排放口基本情况-	- 览表(单位。	除 pH 无量纲外均为 mg/L)
7C 0.2-3		7U1V \ T U.	

	排放口地	理坐标		1.11		间	受	纳污水厂(言息
排放口 编号	经度(°)	纬度(°)	废水排 放量 (t/a)	放量 放 排		歇排放时段	名称	污染物 种类	标准
				缙	间断排		缙	рН	6~9
				云	放,排放	生	굸	COD	30
DW/001	120 029227	20 710222	17550	县第	期间流 量不稳	产	县第	氨氮	1.0
DW001	120.038327	28.719233	17550	第三	単小位 定且无	时	第二	SS	10
				污污	规律,但	间	污	TP	0.2
				水	不属于		水	石油类	1

	处	冲击型	处		
	理	排放	理	TN	10
	厂		厂		

表 6.2-4 废水污染物排放信息表(新建项目)

序号	排放口编号	污染物种类	排放浓度/	日排放量/	年排放量/		
11. 4	1117以口狮勺	77米物件关	(mg/L)	(t/d)	(t/a)		
1	DW001	$\mathrm{COD}_{\mathrm{Cr}}$	500	0.02925	8.775		
2	DWOOT	NH ₃ -N	0.0020475	0.61425			
☆ □ 出立	全厂排放口合计		$\mathrm{COD}_{\mathrm{cr}}$				
生)排机	хнаи		NH ₃ -N		0.61425		

5、非正常工况环境影响分析

污水处理设施故障时,污水无法满足排放要求,如不采取措施可能会对附近 地表水体造成一定的影响。在污水处理设施发生故障,出水无法满足达标要求时, 应将生产废水存储于吨桶、铁桶等容器内。在实际生产中需加强污水处理站的运 行管理,可有效防止事故的发生。事故状态下,为减缓事故影响,污水处理设施 发生故障,应立即组织相关人员对故障进行处理,尽快恢复污水处理站的正常运 行;应定期检查污水输送管道,减少因管道破裂造成的污水外漏而发生的事故排 放;若短时间内无法及时修复,应立即进行停产检修,待完成修复后再投入运行。

6.2.2 营运期地下水环境影响分析

1、地形地貌

缙云县地处武夷山-戴云山隆起地带和寿昌-丽水-景宁断裂带的中断。地貌类型分中心、低山、丘陵、谷地四类,其中山地、丘陵约占全总面积的80%。地势自东向西倾斜。山脉大致以好溪为界,东部为括苍山脉,西部为仙霞岭余脉。东半部群峰崛起,地势高峻,海拔千米以上山峰343座。其中东北部为大盘山所延伸,以低中山地貌为主;东南部为括苍山盘踞,为中山地貌,南部的大洋山主峰海拔千米以上主峰3座。北部地层陷落,构成壶镇、新建两块河谷盆地。中部丘陵广阔绵延,为仙霞岭与括苍山的过度地段。全境地形具东南西三面环山,北口张开呈"V"型特征。

2、环境水文地质问题调查

(1) 地下水埋藏条件

本区属于亚热带季风气候,四季分明,年温适中,热量丰富,雨量较多,干湿两季明显,春夏多旱。年主导风向东北及东南风,平均风速 1.50m/s,夏季以

东南风为主,冬季以西北风为主。

多年平均降雨量 1437.2mm。将雨量在季节分配以 2-7 月中旬为多雨季节,特别是 4-6 月占全年降雨量的 40-50%, 7 月中旬至下年 1 月为干旱少雨季节, 6-8 月时有台风带来降水。

地下水以径流和渗透的形式排泄。地下水动态受季节性气候影响较大。本场地地下水类型主要为凝灰岩裂隙潜水。

根据当地地形初步判断地下水流向为自东向西。

(2) 原生环境水文地质问题

通过对项目区域进行调查发现调查区内不存在天然劣质水,同时不存在地方 性疾病等环境问题,所以在本项目地下水环境评价过程中不存在原生环境水文地 质问题。

(3) 地下水开采问题

项目评价区内的用水活动主要包括工业用水、生活用水和农业用水,水源均取自河系水等地表水体,不会对地下水水体产生影响。所以本项目在环境评价中不考虑地下水开采问题。

(4) 人类活动调查

调查区内人类活动以居住、工业生产为主。调查区内的居民,居民日常生活以参加工业生产和农业作业为主,调查区内不存在生态保护区;工业生产主要是较为简单的二类工业。

3、地下水污染源调查

项目所在地周边主要分布为工业企业、村庄及农田,没有发现明显的针对地下水排污现象,因此区域内可能的污染源主要为污水处理系统的污水渗漏。

4、污染途径和方式

(1) 正常工况下污水排放对地下水的污染影响分析

建设期污水水量小,水质复杂程度简单,对地下水影响微弱。因此,建设期地下水环境不易受到影响。

本项目营运期对地下水环境可能造成影响的污染源主要为生产车间、污水管道、污水处理站、固体废物贮存场所,主要污染物为废水与固体废物。对地下水产生污染的途径主要是渗透污染。渗透污染是导致地下水污染的普遍和主要方式。

A、项目产生的污水排地表水环境,再渗入补给含水层。由工程分析可知,项目废水经处理达标后纳入污水管网,不直接排入附近地表水体;项目废水采用管道输送污水,防止地下渗透。因此不会对地表径流造成影响,继而也不会因补给地下水造成影响。

- B、本环评要求企业设置独立的固体废物堆放间,严禁露天堆放。贮存场所按照《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)、《危险废物贮存污染控制标准》(18597—2023)中的规定建设,设置防雨淋、防渗漏、防流失措施,以防止废物或其淋滤液渗入地下或进入地表水体而污染地下水。
- C、本项目生产车间、污水处理站等涉水作业面均不设埋地暗管,所有穿过污水处理构筑物壁的管道预先设置防水套管,防水套管的环缝隙采用不透水的柔性材料填塞,涉水区采用 HDPE(高密度聚乙烯)垫衬等防渗措施,渗透系数≤10⁻⁷cm/s,严格控制废水渗入地下。厂区做好防渗措施后,本项目对周边环境及地下水影响较小。

企业应加强生产管理,避免非正常事故发生,同时配合相关环境保护管理部门建立地下水污染监控制度和环境管理体系,经常对地下水水质进行监测,以便及时发现并采取有效的补救措施。

因此,本项目运营期正常工况下排水不会直接对地下水环境造成影响,也不 会对附近好溪水质产生影响。

(2) 非正常工况下污水排放对地下水的污染影响分析

污水处理系统多为地下式构筑物,若污水池及其防渗层遭到人为破坏、陈旧破裂或地震等自然灾害引起的破裂,污水可通过包气带或通过构造裂隙等直接污染到潜水含水层。若发生污水渗漏事故,会造成突发性或持久性的地下水污染事故。除非突发性自然灾害,一般情况下,其污染具有一定的隐蔽性和持续性。

5、地下水环境影响预测与评价

(1) 地下水污染类型

根据工程分析可知,本项目生产废水中主要污染因子中为 COD, 因此选取 COD 作为预测因子。

(2) 预测情景设定

本次环评已要求企业依据《危险废物贮存污染控制标准》(18597—2023)

中地下水污染防渗措施要求对危废暂存场所进行建设,依据《一般工业固体废物 贮存和填埋污染控制标准》(GB18599-2020)中地下水污染防渗措施要求对一 般固废暂存场所进行建设,依据《石油化工工程防渗技术规范》

(GB/T50934-2013) 中地下水污染防渗措施要求对各污染区进行建设。

故在正常工况下项目对地下水的影响是极微的,本次预测针对非正常情况进行。

(3) 预测时段、因子、范围

预测时段:根据《环境影响评价技术导则 地下水环境》(HJ610-2016),结合项目特点,将生产运营期的地下水环境影响预测时段限定为 100 天、1000 天。

预测范围:根据项目区域地下水补径排特征,预测重点为项目厂址及下游区域。

预测因子: 生产废水中主要污染因子中为 COD, 因此选取 COD 作为预测因子。

(4) 污染源强

本项目污水处理站调节池防渗层由于老化、腐蚀等原因出现破裂后,会导致 废水持续泄漏进入地下水系统中,并且下渗进入含水层,COD浓度约为914mg/L。

(5) 地下水环境影响预测与评价

①预测评价标准

本次预测选定优先控制污染物,叠加背景值,预测非正常状况下污染物在浅层地下水中随时间的迁移过程,在不考虑污染物在地下水中的吸附、降解情况下,进一步分析污染物向下游迁移距离、超标距离和迁出厂区后浓度变化。COD参照《地表水环境质量标准》(GB3838-2002)中4类标准评价。

预测因子	背景值(mg/L)	标准限值(mg/L)
COD	1.3	10

表 6.2-5 预测因子背景值及其参照水质标准限值

②非正常状况下渗漏地下水污染预测

本次预测采用初始浓度(背景值)不为零时定浓度注入污染物的一维解析解 法进行预测,预测公式为:

$$\frac{c - c_i}{c_0 - c_i} = \frac{1}{2} \left\{ erfc \left(\frac{x - ut}{2 \cdot \sqrt{D_L t}} \right) + \exp \left(\frac{ux}{D_L} \right) erfc \left(\frac{x + ut}{2 \cdot \sqrt{D_L t}} \right) \right\}$$

式中:

X—距注入点的距离, m;

t—时间, d;

c—t 时刻 X 处的污染物浓度,mg/L;

co—污染物注入浓度, mg/L;

c_i—污染物背景浓度, mg/L;

u--水流速度, m/d;

DL—纵向弥散系数, m²/d;

erfc()—余误差函数。

污染发生后 100d、1000d 的 COD 预测结果见表 6.2-6、图 6.2.1 及图 6.2.2。

表 6.2-6 污染物运移 100d 及 1000d 的浓度分布情况

序号	距离	100d	距离	1000d
万 5	(m)	COD 浓度(mg/L)	(m)	COD 浓度(mg/L)
1	0	914	0	914
2	10	908.2463	50	914
3	20	884.5422	100	914
4	30	821.4836	150	914
5	40	700.7661	200	913.999
6	50	527.9653	250	913.9648
7	60	339.6998	300	913.2856
8	70	182.0937	350	905.9199
9	80	80.14587	400	862.0463
10	90	29.01288	450	718.1368
11	100	9.225768	500	457.65
12	110	3.065435	550	197.1632
13	120	1.512361	600	53.25377
14	130	1.32892	650	9.380152
15	140	1.303104	700	2.014431
16	150	1.300262	750	1.335258
17	200	1.300017	800	1.30096
18	250	1.300001	850	1.300014
19	300	1.3	900	1.3
20	400	1.3	950	1.3
21	200	1.3	1000	1.3

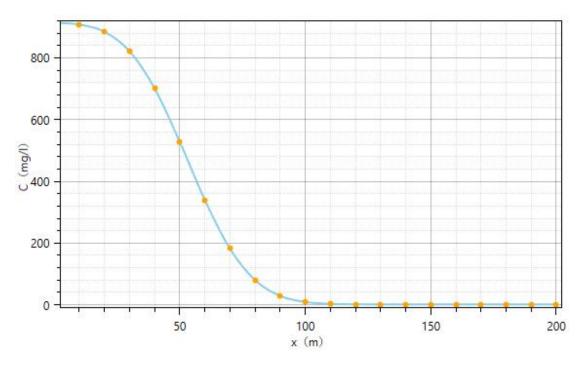


图 6.2.1 污染物运移 100d 浓度分布图

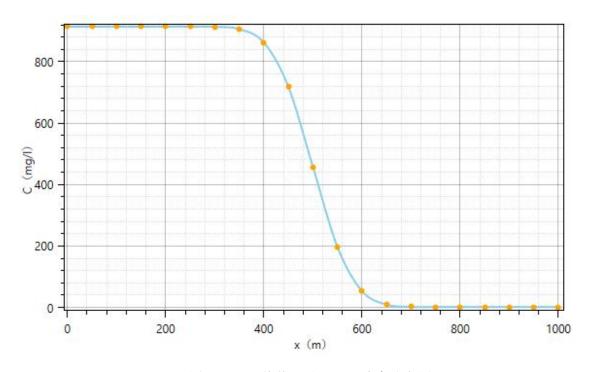


图 6.2.2 污染物运移 1000d 浓度分布图

根据分析, COD 运移随着距离的增加,含水层中 COD 的浓度呈逐渐下降的趋势。运移 100d 时,出现峰值的距离为 0-10m,浓度为 914mg/L;运移 1000d时,出现峰值的距离为 0-150m,浓度为 914mg/L,均出现超标现象。

综上所述,非正常工况下(废水持续泄露),区域地下水环境质量将会受到 较大影响,因此企业应切实做好对建设项目废水的集中收集处理工作,做好厂区 内车间及相关设施地面的硬化防渗工作,严防事故发生,一旦发生事故,必须停产检修,待相关设施运行正常后方可重启生产。正常工况下,因项目供水由市政给水管网提供,废水纳入市政污水管网,外排废水水质简单,不涉重金属及持久性有机物污染物,对地下水环境影响较小。

6.2.3 营运期大气环境影响分析

6.2.3.1 基本气象特征

为了解评价地区的污染气象特征,本评价收集了缙云县气象台站(编号58654)逐日逐次气象观测资料,对该地区全年的气象资料进行了统计分析。

(1) 温度

根表 5.2-7 为缙云县平均温度月变化统计数据,年平均温度变化曲线见图 6.2.3。

月份	1月	2月	3 月	4月	5月	6月	7月	8月	9月	10月	11月	12月
温度(℃)	8.6	11.2	13.7	16.4	23.8	26.9	28.5	29.4	22.8	18.6	15.4	7.6

表 6.2-7 年平均温度月变化表

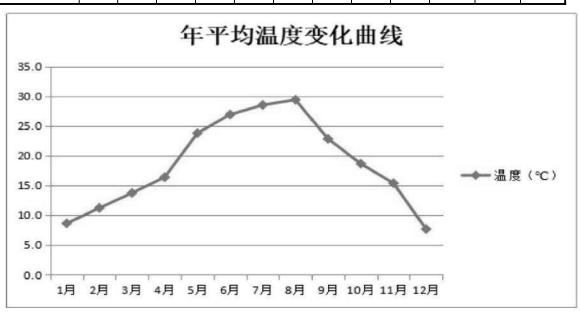


图 6.2.3 年平均温度月变化曲线图

(2) 风速

根据缙云县地面气象资料,统计出缙云县月平均风速随月份的变化和季小时平均风速的日变化表,并绘制出平均风速的月变化曲线图和季小时平均风速的日变化曲线图,详见表 6.2-8、6.2-9 及图 6.2.4、6.2.5。

表 6.2-8 年平均风速的月变化表

Γ	月份	1月	2 月	3 月	4月	5月	6月	7月	8月	9月	10 月	11月	12 月
Γ	风速 (m/s)	1.1	1.1	1.2	1.6	1.2	1.2	2.0	1.2	1.1	1.0	0.7	0.9

表 6.2-9 季小时平均风速的日变化表(单位: m/s)

小时 季节	1	2	3	4	5	6	7	8	9	10	11	12
春季	1.1	1.1	1.0	1.0	1.0	0.9	0.9	0.9	1.1	1.4	1.5	1.7
夏季	1.2	1.1	1.1	1.1	1.2	1.2	1.2	1.2	1.3	1.4	1.6	1.8
秋季	0.8	0.7	0.7	0.7	0.7	0.6	0.7	0.6	0.7	0.9	1.1	1.2
冬季	0.8	0.8	0.8	0.8	0.8	0.7	0.7	0.6	0.9	1.1	1.1	1.3
小时 季节	13	14	15	16	17	18	19	20	21	22	23	24
春季	1.8	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.2	1.1
夏季	2.1	2.2	2.0	1.8	1.6	1.5	1.5	1.5	1.4	1.4	1.3	1.2
秋季	1.3	1.4	1.4	1.3	1.2	1.0	0.9	0.9	0.9	0.9	0.9	0.8
冬季	1.4	1.6	1.6	1.5	1.4	1.2	1.1	0.9	0.9	0.9	0.9	0.8

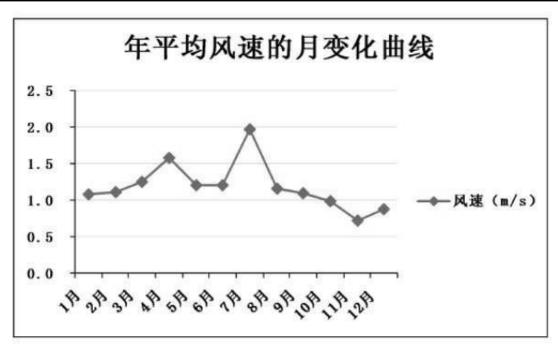


图 6.2.4 年平均风速月变化曲线图

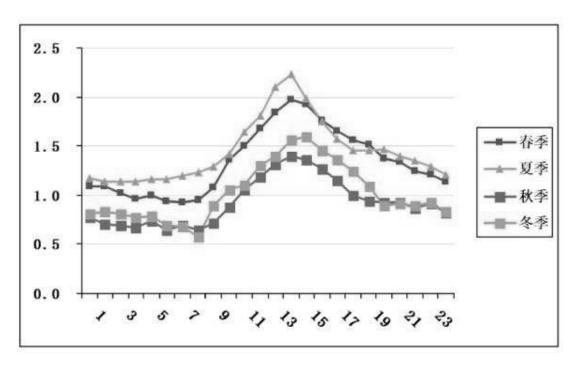


图 6.2.5 季小时平均风速日变化曲线图

(3) 风向、风频及风玫瑰图

缙云县风速受地形影响,有明显的地方特点。全年以 NNE 风向频率为主,达 12.7%,且在一年四季中除春季和夏季外,也都是以 NNE 频率为最高,其次为 S,频率为 10.4%。相应的全年风向频率最小的是 WNW 风,频率为 1.4%。冬、秋两季的风向分布特征和全年趋势一致,由于受季风影响,夏春季略有不同,夏季 S 频率可达 16.9%,春 S 风频率可达 13.7%。缙云县静风频率全年平均为 24.6%。



图 6.2.6 缙云县各季及年平均风向玫瑰图

表 6.2-10 年均风频月变化表

								1 1147 122									
风向 风频 (%)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	С
一月	11.2	15.4	3.6	0.7	5.4	1.2	0.1	0.3	3.9	3.1	1.5	4.0	0.7	3.6	2.1	8.9	34.3
二月	6.8	26.0	8.6	2.4	4.6	1.6	2.2	0.1	1.4	1.0	1.7	0.1	0.0	2.7	3.9	7.6	29.2
三月	5.8	9.9	3.6	4.4	0.9	3.1	2.4	8.7	7.9	5.9	3.4	5.0	0.9	1.3	2.4	7.8	26.3
四月	3.2	14.2	6.4	2.4	1.0	3.9	7.5	5.0	18.9	6.7	4.9	2.8	1.7	1.7	1.4	3.8	14.9
五月	5.2	9.7	6.3	3.8	1.7	3.6	4.2	8.6	14.4	8.2	3.1	1.3	1.7	0.5	2.7	3.9	21.0
六月	2.8	12.6	2.1	1.0	3.2	0.7	3.1	10.7	18.8	4.9	5.7	2.9	5.0	1.8	0.4	2.9	21.5
七月	2.2	6.2	2.0	3.2	5.5	2.3	4.6	9.0	22.7	15.1	6.7	5.8	2.6	1.1	1.3	1.6	8.2
八月	1.9	10.5	2.2	3.2	1.3	4.7	8.7	10.5	9.4	13.2	8.3	3.2	0.8	0.5	4.4	2.6	14.5
九月	5.7	14.7	1.9	4.2	2.4	2.5	4.3	4.3	4.7	4.3	1.7	3.6	2.8	1.0	9.0	6.4	26.5
十月	6.5	11.3	4.4	1.6	4.8	6.2	5.0	6.0	9.5	4.3	2.7	1.5	3.9	0.8	2.8	5.4	23.3
十一月	4.4	13.9	6.8	3.2	2.9	1.4	4.0	4.6	4.9	1.5	1.5	1.7	3.6	1.3	1.5	4.0	38.8
十二月	5.5	8.9	3.8	4.8	0.8	0.8	0.5	5.9	7.4	6.7	1.5	1.9	4.7	0.9	1.5	6.3	38.0

表 6.2-11 年均风频季变化及年均风频变化表

风向					_				_								_
风频 (%)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	C
春季	4.8	11.2	5.4	3.5	1.2	3.5	4.7	7.5	13.7	6.9	3.8	3.0	1.4	1.2	2.2	5.2	20.8
夏季	2.3	9.7	2.1	2.5	3.4	2.6	5.5	10.1	16.9	11.1	6.9	4.0	2.8	1.1	2.1	2.4	14.7
秋季	5.5	13.3	4.4	3.0	3.4	3.4	4.4	5.0	6.4	3.4	2.0	2.2	3.4	1.0	4.4	5.3	29.4
冬季	7.8	16.6	5.3	2.7	3.6	1.2	0.9	2.2	4.3	3.7	1.6	2.0	1.9	2.4	2.5	7.6	33.9
年平均	5.1	12.7	4.3	2.9	2.9	2.7	3.9	6.2	10.4	6.3	3.6	2.8	2.4	1.4	2.8	5.1	24.6

6.2.3.2 大气环境影响分析及预测

1、模型预测基本参数

(1) 预测模式选择

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),本次预测采用 AERMOD 模式进行预测。AERMOD 是稳态烟羽扩散模式,可基于大气边界层 数据特征模拟点源、面源、体源等排放出的污染物在短期(小时平均、日平均)、长期(年平均)的浓度分布,适用于农村或城市地区、简单或复杂地形。

(2) 地形数据

本次评价地形数据来自 csi.cgiar.org,分辨率为 90m。根据导则要求,将地形高程分配给每个模型对象,包括污染源、受体等。

2、达标排放分析

项目生产过程中主要废气有有机废气,工艺粉尘等。废气各污染物排放情况如表 6.2-12 所示。

表 6.2-12 废气产生及排放情况汇总表

			:	有组织		无组织	Ą	
产生位置	工序	污染物	排放量(t/a)	速率 (kg/h)	浓度 (mg/m³)	排放量(t/a)	速率 (kg/h)	排气筒编号
		颗粒物	0.412	0.137	6.9	0.458	0.153	
		醋酸丁酯	0.151	0.050	2.5	0.168	0.056	
	油性漆喷涂	二甲苯	0.107	0.036	2	0.119	0.04	DA001
		非甲烷总烃	0.411	0.137	6.9	0.457	0.152	
		TVOC	0.411	0.137	6.9	0.457	0.152	
		颗粒物	0.671	0.224	11.2	0.746	0.249	
1#厂房	1#厂房 水性漆喷涂 1	非甲烷总烃	0.173	0.058	2.9	0.064	0.021	DA002
		TVOC	0.173	0.058	2.9	0.064	0.021	
		颗粒物	0.671	0.224	11.2	0.746	0.249	
	水性漆喷涂 2	非甲烷总烃	0.173	0.058	2.9	0.064	0.021	DA003
		TVOC	0.173	0.058	2.9	0.064	0.021	
		非甲烷总烃	0.151	0.05	5	0.056	0.019	DA004
	北	TVOC	0.151	0.05	5	0.056	0.019	DA004
		颗粒物	0.412	0.137	6.9	0.458	0.153	
	2#厂房 油性漆喷涂	醋酸丁酯	0.151	0.050	2.5	0.168	0.056	
2世民		二甲苯	0.107	0.036	2	0.119	0.04	DA005
<i>L#)厉</i>		非甲烷总烃	0.411	0.137	6.9	0.457 0.152		
		TVOC	0.411	0.137	6.9	0.457	0.152	
	水性漆喷涂 1	颗粒物	0.671	0.224	11.2	0.746	0.249	DA006

				有组织		无组织	H	
产生位置	工序	污染物	排放量(t/a)	速率 (kg/h)	浓度 (mg/m³)	排放量(t/a)	速率 (kg/h)	排气筒编号
		非甲烷总烃	0.173	0.058	2.9	0.064	0.021	
		TVOC	0.173	0.058	2.9	0.064	0.021	
		颗粒物	0.671	0.224	11.2	0.746	0.249	
	水性漆喷涂 2	非甲烷总烃	0.173	0.058	2.9	0.064	0.021	DA007
		TVOC	0.173	0.058	2.9	0.064	0.021	
	辊涂、淋涂	非甲烷总烃	0.151	0.05	5	0.056	0.019	DA008
	花	TVOC	0.151	0.05	5	0.056	0.019	DA006
1#厂房	木工1	颗粒物	0.025	0.008	1.639	0.033	0.011	DA009
1#) /万	木工 2	颗粒物	0.025	0.008	1.639	0.033	0.011	DA010
2#厂房	木工1	颗粒物	0.025	0.008	1.639	0.033	0.011	DA011
2#) /万	木工 2	颗粒物	0.025	0.008	1.639	0.033	0.011	DA012
1#厂房	批灰、打磨1	颗粒物	0.834	0.278	27.8	0.357	0.119	DA013
1#) /方	批灰、打磨 2	颗粒物	0.417	0.139	27.8	0.357	0.119	DA014
2#厂房	批灰、打磨 1	颗粒物	0.834	0.278	27.8	0.357	0.119	DA015
	批灰、打磨 2	颗粒物	0.417	0.139	27.8	0.357	0.119	DA016

3、大气环境影响预测结果分析与评价

(1) 预测范围和计算点

根据分析,项目评价范围为以项目厂址为中心区域,至厂界外延的矩形区域, 边长取 5km。

计算点为预测范围内的网格点、最大地面浓度点和敏感点。其中周边敏感点 与项目所在位置之间的距离见第二章节表 2.4-1。

(2) 污染源特征

污染源强主要考虑正常工况下排放源强、非正常工况下排放源强,各污染源排放特征见下表 6.2-13。

污染源	排放工况	工况描述
DA001~DA016	正常	治理设施正常运行,废气处理效率按设计标准
DA001~DA016	非正常工况	系统由于故障或维护不当,废气处理效率下降至零

表 6.2-13 污染源特征一览表

(3) 预测模式

根据《环境影响评价技术导则-大气环境》(HJ2.2-2018)中的相关规定及要求,采用 HJ2.2-2018 推荐模式清单中的估算模式 AERSCREEN 判断评价等级。

(4) 预测结果分析与评价

1) 正常排放情况

估算模式参数表见表 6.2-14, 正常排放情况下污染源强见表 6.2-15~6.2-16。

参	数	取值
城市/农村选项	城市/农村	农村
规印/农们延坝	人口数量(城市选项时)	/
最高环境	: 這温度/℃	41.9
最低环境	竟温度/℃	-13.1
土地利	用类型	城市
区域湿	度条件	湿
是否考虑地形	考虑地形	√是 □否
走百 	地形数据分辨率/m	90
	考虑岸线熏烟	□是 √否
是否考虑岸线熏烟	岸线距离/ km	/
	岸线方向/°	/

表 6.2-14 估算模式参数表

表 6.2-15 有组织点源参数清单

编	号								排气	筒							
名	称	DA001	DA002	DA003	DA004	DA005	DA006	DA007	DA008	DA009	DA010	DA011	DA012	DA013	DA014	DA015	DA016
排气筒	X	120.03802 7	120.03730 8	120.037 726	120.037 501	120.037 791	120.037 308	120.037 490	120.037 608	120.037 415	120.037 694	120.037 211	120.0375 01	120.0370 93	120.0375 76	120.0372 86	120.03759 7
底部中心坐标	Y	28.719778	28.719628	28.7195 81	28.7195 34	28.7191 95	28.7191 86	28.7191 95	28.7192 70	28.7196 00	28.7197 03	28.7192 80	28.71915 7	28.71970	28.71970	28.71904 4	28.719129
排气筒底高度		140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140
排气筒	高度/m	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
排气筒出		0.8	0.8	0.8	0.5	0.8	0.8	0.8	0.5	0.3	0.3	0.3	0.3	0.5	0.3	0.5	0.3
烟气流速	/ (m/s)	10.3	11.2	11.3	12.6	10.3	11.2	11.3	12.6	10.9	10.9	10.9	10.9	10.6	11.4	10.6	11.4
烟气温	!度/℃	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
年排放小	小时数/h	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000
年排放	女工况	正常排放	正常排放	正常排放	正常排 放	正常排 放	正常排 放	正常排放	正常排 放	正常排放	正常排 放	正常排放	正常排放				
	颗粒物	0.137	0.224	0.224	/	0.137	0.224	0.224	/	0.008	0.008	0.008	0.008	0.278	0.139	0.278	0.139
污染物 排放速	乙酸酯	0.05	/	/	/	0.05	/	/	/	/	/	/	/	/	/	/	/
率/ (kg/h)	非甲烷 总烃	0.137	0.058	0.058	0.05	0.137	0.058	0.058	0.05	/	/	/	/	/	/	/	/
	苯系物	0.036	/	/	/	0.036	/	/	/	/	/	/	/	/	/	/	/

	TVOC	0.137	/	/	/	0.137	/	/	/	/	/	/	/	/	/	/	/

表 6.2-16 无组织矩形面源参数清单

编号		1#	2#
名称		1#厂房	2#厂房
面源中心坐标	X	120.037705	120.037490
田孫中心至你	Y	28.719618	28.719195
面源海拔高度/m		140	140
面源长度/m		120	110
面源宽度/m		50	50
与正北夹角/°		0	0
面源有效排放高度/	m	12	12
年排放小时数/h		3000	3000
年排放工况		正常排放	正常排放
	颗粒物	0.911	0.911
	乙酸酯类	0.124	0.124
污染物排放速率/(kg/h)	非甲烷总烃	0.164	0.164
	苯系物	0.04	0.04
	TVOC	0.164	0.164

正常排放情况估算模式预测结果见表 6.2-17。

表 6.2-17 正常工况估算模式预测结果表

	文型 (JIII)		预测	列值	订 检阴估	具十萬地次度	
	预测 因子		最大落地浓度 (mg/m³)	最大落地点距离污 染源	环境限值 (mg/m³)	最大落地浓度 占标率(%)	$D_{10\%}$
		颗粒物	2.46E-02	179	0.9	2.73	0
		醋酸丁酯	4.50E-03	179	0.1	4.5	0
	DA001	非甲烷总烃	4.61E-03	179	2.0	0.23	0
		二甲苯	3.23E-03	179	0.2	1.61	0
		TVOC	1.23E-02	179	1.2	2.06	0
	D.1002	颗粒物	7.13E-02	146	0.1	7.92	0
	DA002	 非甲烷总烃	9.37E-03	146	2.0	0.47	0
	D.1002	颗粒物	7.13E-02	146	0.1	7.92	0
	DA003	非甲烷总烃	9.37E-03	146	2.0	0.47	0
有组织	DA004	非甲烷总烃	2.88E-03	179	2.0	0.14	0
		颗粒物	2.46E-02	179	0.9	2.73	0
		醋酸丁酯	4.50E-03	179	0.1	4.5	0
	DA005	非甲烷总烃	4.61E-03	179	2.0	0.23	0
		二甲苯	3.23E-03	179	0.2	1.61	0
		TVOC	1.23E-02	179	1.2	2.06	0
	DAGG	颗粒物	7.13E-02	146	0.1	7.92	0
	DA006	非甲烷总烃	9.37E-03	146	2.0	0.47	0
	D 4 007	颗粒物	7.13E-02	146	0.1	7.92	0
	DA007	非甲烷总烃	9.37E-03	146	2.0	0.47	0

	DA008	非甲烷总烃	2.88E-03	179	2.0	0.14	0
	DA009	颗粒物	8.08E-04	288	0.9	0.09	0
	DA010	颗粒物	8.08E-04	288	0.9	0.09	0
	DA011	颗粒物	8.08E-04	288	0.9	0.09	0
	DA012	颗粒物	8.08E-04	288	0.9	0.09	0
	DA013	颗粒物	5.55E-03	288	0.9	0.62	0
	DA014	颗粒物	2.73E-03	288	0.9	0.30	0
	DA015	颗粒物	5.55E-03	288	0.9	0.62	0
	DA016	颗粒物	2.73E-03	288	0.9	0.30	0
		颗粒物	2.31E-01	103	0.9	25.66	0
		乙酸酯类	2.01E-02	103	0.1	20.1	0
	1#厂房	非甲烷总烃	4.37E-02	103	2.0	2.19	0
		苯系物	1.35E-02	103	0.2	6.73	0
工.妇.幻		TVOC	1.12E-01	103	1.2	18.75	0
无组织		颗粒物	3.23E-01	99	0.9	35.88	0
		乙酸酯类	2.16E-02	99	0.1	21.6	0
	2#厂房	非甲烷总烃	4.39E-02	99	2.0	2.19	0
		苯系物	1.36E-02	99	0.2	6.80	0
		TVOC	1.14E-01	99	1.2	19.02	0

由上述预测结果可知,本项目废气排放最大地面浓度占标率 Pmax≥10%,大气环境评价工作等级为一级。

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)采用 EIAProA2018 (版本 2.6.449)中的 AREMOD 模型对本项目废气排放对周围环境浓度贡献值进行了进一步预测。预测计算表见表 6.2-18~6.2-22,图 6.2.7~6.2.14。

表 6.2-18 正常工况下小时平均浓度影响预测结果表

污染物		平均	最大贡献值	出现时间	占标率/%	达标
行条彻	1.火火 点	时段	(mg/m ³)	山地时间	口 小 竿 / 70	情况
	第川村		0.0016	19010110	0.17	达标
	前朱村		0.0005	19010110	0.06	达标
	后山沿村		0.0002	19010110	0.02	达标
	坑口西村		0.0001	19010111	0.01	达标
	宅基村		0.0005	19010110	0.05	达标
	马渡村		0.0014	19010110	0.15	达标
	缙云县马渡小学		0.0012	19010110	0.14	达标
	三都村		0.0018	19010110	0.2	达标
	梅溪村		0.0007	19010110	0.08	达标
	和源村		0.0010	19010116	0.12	达标
TSP	浣花溪村		0.0000	19010116	0	达标
131	三马东村		0.0043	19010118	0.47	达标
	马桥头村	1 小时 浓度	0.0011	19010118	0.12	达标
	洋山村		0.0979	19010104	10.88	达标
	寺根村		0.0532	19010102	5.91	达标
	庙后村		0.0370	19010107	4.11	达标
	溪南村		0.0408	19010108	4.53	达标
	王弄村		0.0279	19010108	3.1	达标
	溪岩下村		0.0292	19010108	3.25	达标
	宏坦村		0.0113	19010121	1.26	达标
	新建镇集镇区		0.0434	19010106	4.83	达标
	区域最大落地浓度点		0.1534	19010105	17.04	达标
	笕川村		0.0001	19010110	0.12	达标
	前朱村		0.0000	19010110	0.04	达标
フェ公正と	后山沿村		0.0000	19010110	0.01	达标
乙酸酯	坑口西村		0.0000	19010111	0.01	达标
	宅基村		0.0000	19010110	0.04	达标
	马渡村		0.0001	19010110	0.11	达标
	缙云县马渡小学		0.0001	19010110	0.1	达标

	三都村	0.0001	19010110	0.15	达标
	梅溪村	0.0001	19010110	0.05	达标
	和源村	0.0001	19010116	0.08	达标
	浣花溪村	0.0000	19010116	0	达标
	三马东村	0.0004	19010118	0.4	达标
	马桥头村	0.0001	19010118	0.1	达标
	洋山村	0.0092	19010104	9.2	达标
	寺根村	0.0050	19010102	4.99	达标
	庙后村	0.0036	19010107	3.62	达标
	溪南村	0.0040	19010108	3.96	达标
	王弄村	0.0028	19010108	2.8	达标
	溪岩下村	0.0029	19010108	2.9	达标
	宏坦村	0.0011	19010121	1.07	达标
	新建镇集镇区	0.0041	19010106	4.08	达标
	区域最大落地浓度点	0.0144	19010105	14.41	达标
		0.0002	19010110	0.01	达标
	前朱村	0.0001	19010110	0	达标
	后山沿村	0.0000	19010110	0	达标
	坑口西村	0.0000	19010111	0	达标
	宅基村	0.0001	19010110	0	达标
	马渡村	0.0001	19010110	0.01	达标
	缙云县马渡小学	0.0001	19010110	0.01	达标
	三都村	0.0002	19010110	0.01	达标
	梅溪村	0.0001	19010110	0	达标
	和源村	0.0001	19010116	0.01	达标
非甲烷	浣花溪村	0.0000	19010116	0	达标
总烃	三马东村	0.0004	19010118	0.02	达标
	马桥头村	0.0001	19010118	0	达标
	洋山村	0.0071	19010104	0.36	达标
	寺根村	0.0039	19010102	0.2	达标
	庙后村	0.0033	19010103	0.16	达标
	溪南村	0.0031	19010108	0.16	达标
	王弄村	0.0023	19010108	0.11	达标
	溪岩下村	0.0023	19010108	0.12	达标
	宏坦村	0.0009	19010121	0.05	达标
	新建镇集镇区	0.0032	19010106	0.16	达标
	区域最大落地浓度点	0.0112	19010105	0.56	达标
サブル		0.0000	19010110	0.02	达标
苯系物	前朱村	0.0000	19010110	0.01	达标

第二 第二 第二 4 7 7 2	山沿村 口西村 它基村 马渡村 县马渡小学 三都村 海溪村 印源村 花溪村 马东村	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	19010110 19010111 19010110 19010110 19010110 19010110	0 0 0.01 0.02 0.01 0.02	达标 达标 达标 技标 达标 技标 技标
至 至 至 本 大 元 元	E基村马渡村县马渡小学三都村每溪村印源村花溪村	0.0000 0.0000 0.0000 0.0000	19010110 19010110 19010110 19010110	0.01 0.02 0.01 0.02	达标 达标 达标
# # # # # # # # # # # # # # # # # # #	马渡村 县马渡小学 三都村 海溪村 和源村 花溪村	0.0000 0.0000 0.0000 0.0000	19010110 19010110 19010110	0.02 0.01 0.02	达标 达标
缙云县 = *** *** *** *** *** ::	县马渡小学三都村每溪村和源村花溪村	0.0000 0.0000 0.0000	19010110 19010110	0.01	达标
三 木 汗 完 三	三都村 海溪村 阳源村 花溪村	0.0000	19010110	0.02	
木 え 浣 三	海溪村 印源村 花溪村	0.0000			心你
浣	和源村 花溪村		19010110	[[] [] [24-4-5
浣	花溪村	0.0000	10010116		达标
Ξ		1 0 0000	19010116	0.01	达标
	. 与 朱 秆	0.0000	19010116	0	达标
		0.0001	19010118	0.06	达标
	桥头村	0.0000	19010118	0.01	达标
<u> </u>	羊山村	0.0022	19010104	1.11	达标
		0.0012	19010102	0.6	达标
		0.0009	19010107	0.46	达标
	奚南村	0.0010	19010108	0.49	达标
	E弄村	0.0007	19010108	0.35	达标
溪	岩下村	0.0007	19010108	0.36	达标
5	<u>密坦村</u>	0.0003	19010121	0.13	达标
新建	镇集镇区	0.0010	19010106	0.49	达标
区域最大	大落地浓度点	0.0035	19010105	1.75	达标
Ĵ		0.0002	19010110	0.01	达标
自		0.0001	19010110	0	达标
后	山沿村	0.0000	19010110	0	达标
坑	口西村	0.0000	19010111	0	达标
	它基村	0.0001	19010110	0	达标
Ī	马渡村	0.0002	19010110	0.01	达标
缙云县	县马渡小学	0.0002	19010110	0.01	达标
=	三都村	0.0003	19010110	0.02	达标
木	每溪村	0.0001	19010110	0.01	达标
TVOC 利	印源村	0.0001	19010116	0.01	达标
浣	花溪村	0.0000	19010116	0	达标
Ξ	马东村	0.0007	19010118	0.05	达标
马	桥头村	0.0002	19010118	0.01	达标
Ĭ ž	羊山村	0.0185	19010104	1.15	达标
=		0.0099	19010102	0.62	达标
Jī		0.0068	19010107	0.42	达标
<u> </u>	奚南村	0.0076	19010108	0.48	达标
	 E弄村	0.0053	19010108	0.33	达标
	岩下村	0.0055	19010108	0.34	达标

宏坦村	0.0020	19010121	0.13	达标
新建镇集镇区	0.0082	19010106	0.51	达标
区域最大落地浓度点	0.0290	19010105	1.82	达标

表 6.2-19 正常工况下保证率日均浓度影响预测结果表

污染物		平均	最大贡献值	出现时间	占标率/%	达标		
77条70	1英模式	时段	(mg/m^3)		口你华//0	情况		
	笕川村		0.0001	190101	0.05	达标		
	前朱村		0.0000	190101	0.01	达标		
	后山沿村		0.0000	190101	0	达标		
	坑口西村		0.0000	190101	0	达标		
	宅基村		0.0000	190101	0.01	达标		
	马渡村		0.0001	190101	0.02	达标		
	缙云县马渡小学		0.0001	190101	0.02	达标		
	三都村		0.0001	190101	0.03	达标		
	梅溪村		0.0000	190101	0.01	达标		
	和源村		0.0000	190101	0.02	达标		
TSP	浣花溪村		0.0000	190101	0	达标		
151	三马东村		0.0002	190101	0.08	达标		
	马桥头村	度	0.0001	190101	0.03	达标		
	洋山村		0.0151	190101	5.03	达标		
	寺根村		0.0096	190101	3.2	达标		
	庙后村		0.0061	190101	2.04	达标		
	溪南村		0.0028	190101	0.93	达标		
	王弄村		0.0021	190101	0.71	达标		
	溪岩下村		0.0020	190101	0.67	达标		
	宏坦村		0.0005	190101	0.18	达标		
	新建镇集镇区	1	1	1	0.0022	190101	0.73	达标
	区域最大落地浓度点	0.0359	190101	11.98	达标			

表 6.2-20 正常工况下保证率年均浓度影响预测结果表

污染物	预测点	平均时段	最大贡献值(mg/m³)	占标率/%	达标 情况
	笕川村		0.0001	0.07	达标
	前朱村		0.0000	0.01	达标
	后山沿村		0.0000	0.01	达标
TSP	坑口西村	保证率年均浓度	0.0000	0	达标
	宅基村		0.0000	0.01	达标
	马渡村		0.0001	0.03	达标
	缙云县马渡小学		0.0001	0.03	达标

三都村	0.0001	0.04	达标
梅溪村	0.0000	0.02	达标
和源村	0.0000	0.02	达标
浣花溪村	0.0000	0	达标
三马东村	0.0002	0.12	达标
马桥头村	0.0001	0.04	达标
洋山村	0.0151	7.54	达标
寺根村	0.0096	4.8	达标
庙后村	0.0061	3.06	达标
溪南村	0.0028	1.4	达标
王弄村	0.0021	1.06	达标
溪岩下村	0.0020	1.01	达标
宏坦村	0.0005	0.27	达标
新建镇集镇区	0.0022	1.1	达标
区域最大落地浓度点	0.0359	17.97	达标

表 6.2-21 正常工况下小时平均浓度影响预测结果表

污染物	预测点	平均时段	贡献值	出现时间	占标率	现状浓度	叠加后浓度	占标率	达标情况
77条70	1英极点	一场的权	(mg/m³)	山地門門	(%)	(mg/m³)	(mg/m³)	(%)	心你用儿
	笕川村		0.0016	19010110	0.17	0.256	0.2576	28.622	达标
	前朱村		0.0005	19010110	0.06	0.256	0.2565	28.500	达标
	后山沿村		0.0002	19010110	0.02	0.256	0.2562	28.467	达标
	坑口西村		0.0001	19010111	0.01	0.256	0.2561	28.456	达标
	宅基村		0.0005	19010110	0.05	0.256	0.2565	28.500	达标
	马渡村		0.0014	19010110	0.15	0.256	0.2574	28.600	达标
	缙云县马渡小学		0.0012	19010110	0.14	0.256	0.2572	28.578	达标
	三都村		0.0018	19010110	0.2	0.256	0.2578	28.644	达标
	梅溪村	1 小时浓度	0.0007	19010110	0.08	0.256	0.2567	28.522	达标
TSP	和源村		0.0010	19010116	0.12	0.256	0.257	28.556	达标
131	浣花溪村	1 分明 (私)支	0.0000	19010116	0	0.256	0.256	28.444	达标
	三马东村		0.0043	19010118	0.47	0.256	0.2603	28.922	达标
	马桥头村		0.0011	19010118	0.12	0.256	0.2571	28.567	达标
	洋山村		0.0979	19010104	10.88	0.256	0.3539	39.322	达标
	寺根村		0.0532	19010102	5.91	0.256	0.3092	34.356	达标
	庙后村		0.0370	19010107	4.11	0.256	0.293	32.556	达标
	溪南村		0.0408	19010108	4.53	0.256	0.2968	32.978	达标
	王弄村		0.0279	19010108	3.1	0.256	0.2839	31.544	达标
	溪岩下村		0.0292	19010108	3.25	0.256	0.2852	31.689	达标
	宏坦村		0.0113	19010121	1.26	0.256	0.2673	29.700	达标

	新建镇集镇区		0.0434	19010106	4.83	0.256	0.2994	33.267	 达标
	区域最大落地浓度点		0.1534	19010105	17.04	0.256	0.4094	45.489	达标
	第川村		0.0000	19010110	0.02	<1.5×10 ⁻³	0.0000	0.02	达标
	前朱村		0.0000	19010110	0.01	<1.5×10 ⁻³	0.0000	0.01	达标
	后山沿村		0.0000	19010110	0	<1.5×10 ⁻³	0.0000	0	达标
	坑口西村		0.0000	19010111	0	<1.5×10 ⁻³	0.0000	0	达标
	宅基村		0.0000	19010110	0.01	<1.5×10 ⁻³	0.0000	0.01	达标
	马渡村		0.0000	19010110	0.02	<1.5×10 ⁻³	0.0000	0.02	达标
	缙云县马渡小学		0.0000	19010110	0.01	<1.5×10 ⁻³	0.0000	0.01	达标
	三都村		0.0000	19010110	0.02	<1.5×10 ⁻³	0.0000	0.02	达标
	梅溪村		0.0000	19010110	0.01	<1.5×10 ⁻³	0.0000	0.01	达标
	和源村		0.0000	19010116	0.01	<1.5×10 ⁻³	0.0000	0.01	达标
二甲苯	浣花溪村	1 小时浓度	0.0000	19010116	0	<1.5×10 ⁻³	0.0000	0	达标
	三马东村		0.0001	19010118	0.06	<1.5×10 ⁻³	0.0001	0.06	达标
	马桥头村		0.0000	19010118	0.01	<1.5×10 ⁻³	0.0000	0.01	达标
	洋山村		0.0022	19010104	1.11	<1.5×10 ⁻³	0.0022	1.11	达标
	寺根村		0.0012	19010102	0.6	<1.5×10 ⁻³	0.0012	0.6	达标
	庙后村		0.0009	19010107	0.46	<1.5×10 ⁻³	0.0009	0.46	达标
	溪南村		0.0010	19010108	0.49	<1.5×10 ⁻³	0.0010	0.49	达标
	王弄村		0.0007	19010108	0.35	<1.5×10 ⁻³	0.0007	0.35	达标
	溪岩下村		0.0007	19010108	0.36	<1.5×10 ⁻³	0.0007	0.36	达标
	宏坦村		0.0003	19010121	0.13	<1.5×10 ⁻³	0.0003	0.13	达标
	新建镇集镇区		0.0010	19010106	0.49	<1.5×10 ⁻³	0.0010	0.49	达标

	区域最大落地浓度点		0.0035	19010105	1.75	<1.5×10 ⁻³	0.0035	1.75	达标
	第川村		0.0002	19010110	0.01	1.37	1.3702	68.51	达标
	前朱村		0.0001	19010110	0	1.37	1.3701	68.505	达标
	后山沿村		0.0000	19010110	0	1.37	1.37	68.5	达标
	坑口西村		0.0000	19010111	0	1.37	1.37	68.5	达标
	宅基村		0.0001	19010110	0	1.37	1.3701	68.505	达标
	马渡村		0.0001	19010110	0.01	1.37	1.3701	68.505	达标
	缙云县马渡小学		0.0001	19010110	0.01	1.37	1.3701	68.505	达标
	三都村		0.0002	19010110	0.01	1.37	1.3702	68.51	达标
	梅溪村	1 小时浓度	0.0001	19010110	0	1.37	1.3701	68.505	达标
	和源村		0.0001	19010116	0.01	1.37	1.3701	68.505	达标
非甲烷	浣花溪村		0.0000	19010116	0	1.37	1.37	68.5	达标
总烃	三马东村		0.0004	19010118	0.02	1.37	1.3704	68.52	达标
	马桥头村		0.0001	19010118	0	1.37	1.3701	68.505	达标
	洋山村		0.0071	19010104	0.36	1.37	1.3771	68.855	达标
	寺根村		0.0039	19010102	0.2	1.37	1.3739	68.695	达标
	庙后村		0.0033	19010103	0.16	1.37	1.3733	68.665	达标
	溪南村		0.0031	19010108	0.16	1.37	1.3731	68.655	达标
	王弄村		0.0023	19010108	0.11	1.37	1.3723	68.615	达标
	溪岩下村		0.0023	19010108	0.12	1.37	1.3723	68.615	达标
	宏坦村		0.0009	19010121	0.05	1.37	1.3709	68.545	达标
	新建镇集镇区		0.0032	19010106	0.16	1.37	1.3732	68.66	达标
	区域最大落地浓度点		0.0112	19010105	0.56	1.37	1.3712	68.56	达标

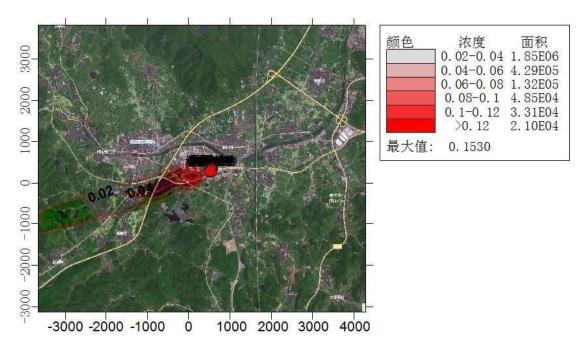


图 6.2.7 正常工况下 TSP 小时平均浓度贡献值分布图

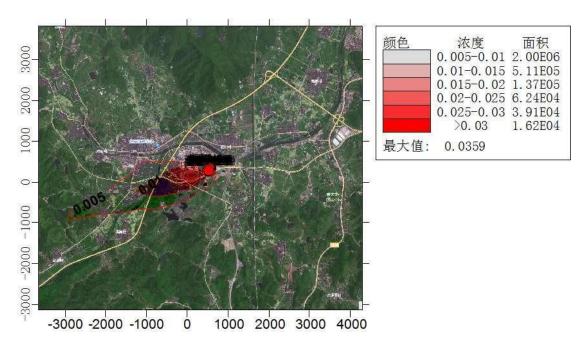


图 6.2.8 正常工况下 TSP 日平均浓度贡献值分布图

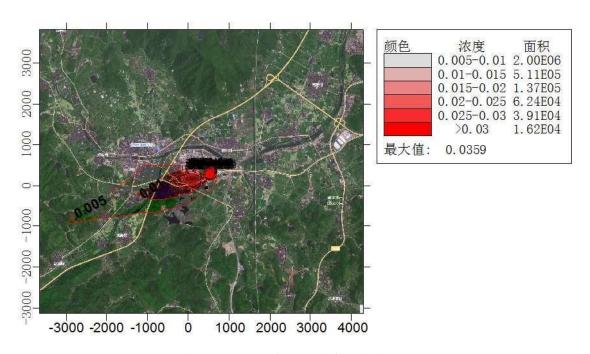


图 6.2.9 正常工况下 TSP 年平均浓度贡献值分布图

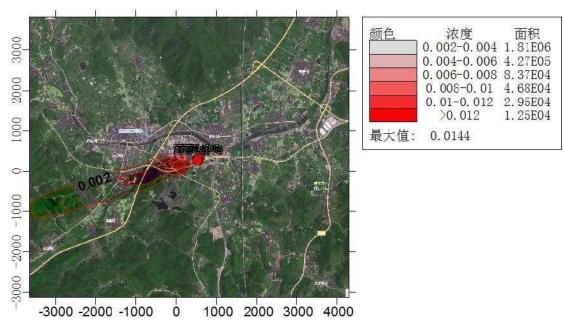


图 6.2.10 正常工况下乙酸酯类小时平均浓度贡献值分布图

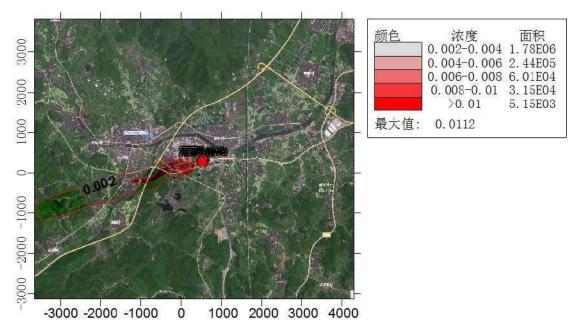


图 6.2.11 正常工况下非甲烷总烃小时平均浓度贡献值分布图

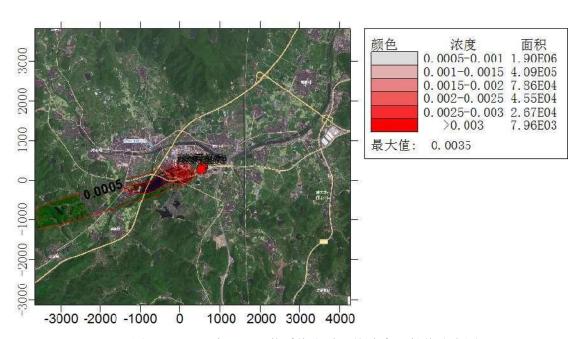


图 6.2.12 正常工况下苯系物小时平均浓度贡献值分布图

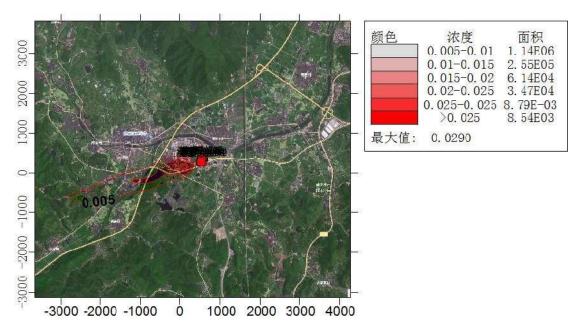


图 6.2.13 正常工况下 TVOC 小时平均浓度贡献值分布图

根据上表可知,10%<正常排放下污染物小时浓度、日均浓度、年均浓度贡献值的最大浓度占标率<100%。对于排放的污染物,保证率日平均质量浓度和年平均质量浓度均符合环境质量标准,对于小时平均浓度,叠加现状小时浓度值后符合环境质量标准要求。由此可见,项目建成后环境影响符合环境功能区划。项目在正常运行情况下,采取本环评报告提出的污染防治措施后,项目所排放的废气对周边大气环境可接受。

2) 非正常工况

项目非正常排放情况以废气处理设施处理效率下降至零进行分析,非正常情况下各污染物排放速率和排放浓度见表 6.2-22。

表 6.2-22 非正常情况污染物排放情况一栏表

产生位置	工序	排气筒编 号	污染物	排放速 率 (kg/h)	排放浓度 (mg/m³)	排放速率标 准(kg/h)	排放浓度标准(mg/m³)
			颗粒物	1.37	69	/	30
			醋酸丁酯	0.504	25.2	/	60
	油性漆喷涂	DA001	二甲苯	0.36	18	1	40
			非甲烷总烃	1.37	69	/	80
			TVOC	1.37	69	1	150
	水性漆喷涂 1	DA002	颗粒物	2.24	112	1	30
1#厂房			非甲烷总烃	0.193	10	/	80
			TVOC	0.193	10	/	150
	水性漆喷涂 2	DA003	颗粒物	2.24	112	/	30
			非甲烷总烃	0.193	10	/	80
			TVOC	0.193	10	/	150
	辊涂、淋涂	DA004	非甲烷总烃	0.167	16.7	/	80
	干地/示、/怀/示	DA004	TVOC	0.167	16.7	/	150
			颗粒物	1.37	69	/	30
			醋酸丁酯	0.504	25.2	1	60
2#厂房	油性漆喷涂	DA005	二甲苯	0.36	18	1	40
2#) 店			非甲烷总烃	1.37	69	1	80
			TVOC	1.37	69	1	150
	水性漆喷涂 1	DA006	颗粒物	2.24	112	1	30

			非甲烷总烃	0.193	10	/	80
			TVOC	0.193	10	1	150
			颗粒物	2.24	112	1	30
	水性漆喷涂 2	DA007	非甲烷总烃	0.193	10	/	80
			TVOC	0.193	10	/	150
	辊涂、淋涂	DA008	非甲烷总烃	0.167	16.7	1	80
		DA008	TVOC	0.167	16.7	/	150
1#厂房	木工 1	DA009	颗粒物	0.082	16.4	3.5	120
1#) //5	木工 2	DA010	颗粒物	0.082	16.4	3.5	120
2#厂房	木工 1	DA011	颗粒物	0.082	16.4	3.5	120
2#) //3	木工 2	DA012	颗粒物	0.082	16.4	3.5	120
1#厂房	批灰、打磨 1	DA013	颗粒物	1.39	139	/	30
1#) 店	批灰、打磨 2	DA014	颗粒物	1.39	278	1	30
2#厂房	批灰、打磨 1	DA015	颗粒物	1.39	139	1	30
2#) 方	批灰、打磨 2	DA016	颗粒物	1.39	278	1	30

由上表可知,非正常排放情况下,DA001、DA002、DA003、DA005、DA006、DA007、DA013、DA014、DA015、DA016 排气 筒废气排放超标。

非正常工况下污染预测结果见表 6.2-23, 图 6.2.14~6.2.18。

表 6.2-23 非正常工况下小时平均浓度影响预测结果表

ı	从 0.2-23 日正刊 工机 1 7 H 1 P 2 H N X N T 1 X N X N X N X N X N X N X N X N X N X										
污染物	预测点	平均 时段	最大贡献值 (mg/m³)	出现时间	占标率/%	达标 情况					
			0.0113	19010110	1.26	达标					
	前朱村		0.0036	19010110	0.4	达标					
	后山沿村		0.0017	19010110	0.19	达标					
	坑口西村		0.0012	19010111	0.13	达标					
	宅基村		0.0027	19010110	0.31	达标					
	马渡村		0.0060	19010110	0.66	达标					
	缙云县马渡小学		0.0053	19010110	0.59	达标					
	三都村		0.0074	19010110	0.82	达标					
	梅溪村		0.0044	19010110	0.48	达标					
	和源村		0.0056	19010116	0.63	达标					
	浣花溪村		0.0003	19010116	0.03	达标					
TSP	三马东村		0.0139	19010118	1.54	达标					
	马桥头村		0.0030	19010118	0.34	达标					
	洋山村		0.1360	19010101	15.11	达标					
	寺根村	1 小时	0.1514	19010123	16.83	达标					
	庙后村		0.1118	19010103	12.42	达标					
	溪南村		0.0752	19010120	8.36	达标					
	王弄村	浓度	0.0864	19010120	9.6	达标					
	溪岩下村		0.0511	19010108	5.67	达标					
	宏坦村		0.0235	19010121	2.61	达标					
	新建镇集镇区		0.0435	19010106	4.83	达标					
	区域最大落地浓度点		0.3502	19010119	38.92	达标					
	第川村		0.0025	19010111	2.48	达标					
	前朱村		0.0009	19010110	0.9	达标					
	后山沿村		0.0003	19010110	0.34	达标					
	坑口西村		0.0003	19010111	0.31	达标					
	宅基村		0.0007	19010110	0.73	达标					
乙酸酯	马渡村		0.0018	19010110	1.81	达标					
类	缙云县马渡小学		0.0016	19010110	1.61	达标					
	三都村		0.0023	19010110	2.3	达标					
	梅溪村		0.0011	19010110	1.06	达标					
	和源村		0.0016	19010116	1.59	达标					
	浣花溪村		0.0001	19010116	0.05	达标					
	三马东村		0.0002	19010116	0.23	达标					

	马桥头村		0.0003	19010116	0.27	达标
		-	0.0003	19010110	8.66	达标
		-	0.0087	19010109	4.73	达标
l		-	0.0047	19010123	6.57	达标
l		+	0.0006	19010103	2.59	达标
-		_				
-	王弄村		0.0040	19010120	4	达标
	溪岩下村	-	0.0019	19010108	1.88	达标
l -	宏坦村	-	0.0007	19010111	0.68	达标
l -	新建镇集镇区	4	0.0016	19010109	1.61	达标
	区域最大落地浓度点		0.0448	19010119	44.75	达标
	第川村 		0.0008	19010110	0.04	达标
	前朱村	_	0.0003	19010110	0.01	达标
	后山沿村		0.0001	19010110	0.01	达标
_	坑口西村		0.0001	19010111	0	达标
	宅基村		0.0002	19010110	0.01	达标
	马渡村		0.0004	19010110	0.02	达标
	缙云县马渡小学		0.0004	19010110	0.02	达标
	三都村		0.0005	19010110	0.03	达标
	梅溪村		0.0003	19010110	0.02	达标
	和源村		0.0004	19010116	0.02	达标
非甲烷	浣花溪村		0.0000	19010116	0	达标
总烃	三马东村		0.0012	19010118	0.06	达标
	马桥头村		0.0003	19010118	0.01	达标
	洋山村		0.0118	19010101	0.59	达标
	寺根村		0.0115	19010123	0.57	达标
	庙后村		0.0094	19010103	0.47	达标
	溪南村		0.0057	19010120	0.29	达标
	王弄村		0.0065	19010120	0.33	达标
	溪岩下村		0.0046	19010108	0.23	达标
	宏坦村		0.0018	19010121	0.09	达标
	新建镇集镇区	1	0.0032	19010106	0.16	达标
	区域最大落地浓度点	1	0.0276	19010119	1.38	达标
			0.0003	19010110	0.13	达标
	前朱村		0.0001	19010110	0.04	达标
	后山沿村		0.0000	19010110	0.02	达标
苯系物	坑口西村	1	0.0000	19010111	0.01	达标
		1	0.0001	19010110	0.03	达标
	马渡村		0.0001	19010110	0.07	达标
	缙云县马渡小学		0.0001	19010110	0.06	达标

	— → 77 + +		0.0003	10010110	0.00	÷++=
	三都村	-	0.0002	19010110	0.09	达标 达标
-	梅溪村 和源村	-	0.0001	19010110	0.05	达标
-		4	0.0002	19010116 19010116	0.08	达标
		-				
	三马东村	-	0.0005	19010118	0.27	达标
	马桥头村 洋山村		0.0001	19010118	0.06	达标
			0.0047	19010101	2.36	达标
	寺根村	-	0.0037	19010123	1.87	达标
	庙后村	-	0.0036	19010103	1.78	达标
	溪南村	1	0.0021	19010108	1.04	达标
_	王弄村	_	0.0021	19010120	1.06	达标
	溪岩下村	_	0.0019	19010108	0.94	达标
	宏坦村		0.0006	19010121	0.32	达标
	新建镇集镇区	_	0.0010	19010106	0.49	达标
	区域最大落地浓度点	1	0.0096	19010119	4.82	达标
	<u> </u>		0.0011	19010110	0.07	达标
	前朱村		0.0003	19010110	0.02	达标
	后山沿村		0.0001	19010110	0.01	达标
	坑口西村		0.0001	19010111	0.01	达标
	宅基村		0.0003	19010110	0.02	达标
	马渡村		0.0006	19010110	0.04	达标
	缙云县马渡小学		0.0006	19010110	0.03	达标
	三都村		0.0008	19010110	0.05	达标
	梅溪村		0.0004	19010110	0.03	达标
	和源村		0.0006	19010116	0.04	达标
TVOC	浣花溪村		0.0000	19010116	0	达标
TVOC	三马东村		0.0024	19010118	0.15	达标
 	马桥头村		0.0006	19010118	0.04	达标
	洋山村		0.0247	19010101	1.54	达标
	寺根村		0.0165	19010123	1.03	达标
	庙后村		0.0164	19010103	1.02	达标
	溪南村		0.0119	19010108	0.74	达标
	王弄村	1	0.0100	19010108	0.62	达标
	溪岩下村	1	0.0099	19010108	0.62	达标
	宏坦村	1	0.0034	19010121	0.21	达标
	新建镇集镇区	1	0.0082	19010106	0.51	达标
	区域最大落地浓度点	1	0.0424	19010119	2.65	达标

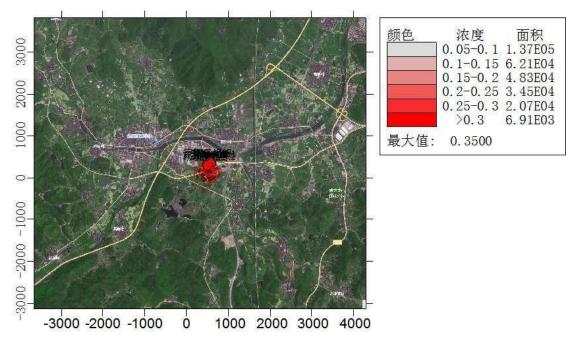


图 6.2.14 非正常工况下 TSP 小时平均浓度贡献值分布图

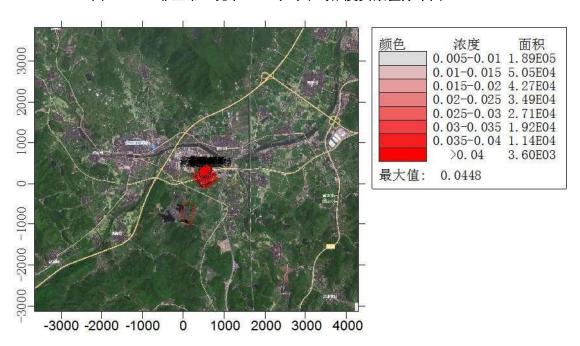


图 6.2.15 非正常工况下乙酸酯类小时平均浓度贡献值分布图

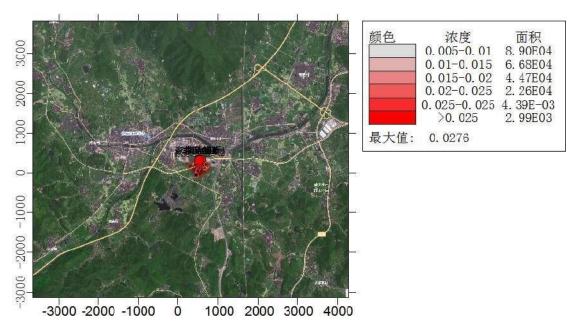


图 6.2.16 非正常工况下非甲烷总烃小时平均浓度贡献值分布图

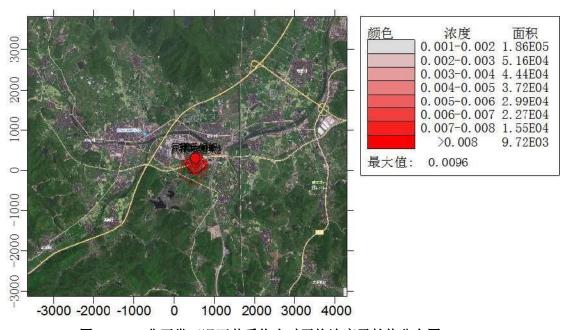


图 6.2.17 非正常工况下苯系物小时平均浓度贡献值分布图

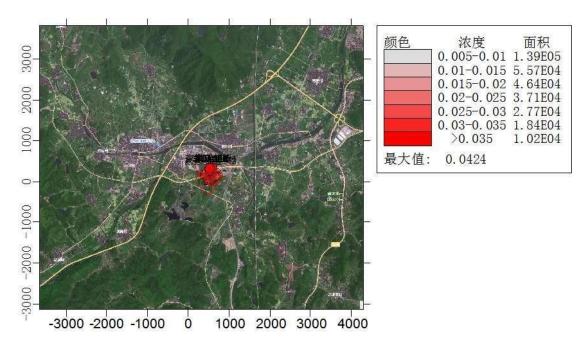


图 6.2.18 非正常工况下 TVOC 小时平均浓度贡献值分布图

由预测结果可知,非正常工况下各染物小时浓度贡献值大幅度增加,因此,要求建设单位加强管理,做好设施的维护、检修,避免废气非正常排放,一旦发现废气治理设施非正常运行,应立即停产检修。

6.2.3.3 污染物排放量核算结果

污染物排放量核算结果见下表 6.2-24~6.2-25。

有组织 产生位 排气筒 工序 污染物 速率 浓度 置 编号 排放量(t/a) (kg/h) (mg/m^3) 颗粒物 0.137 0.412 6.9 醋酸丁酯 0.050 2.5 0.151 油性漆喷涂 非甲烷总烃 DA001 0.137 6.9 0.411 二甲苯 2 0.036 0.107 **TVOC** 0.137 6.9 0.411 1#厂房 颗粒物 0.224 0.671 11.2 水性漆喷涂 DA002 1 非甲烷总烃 0.058 2.9 0.173 水性漆喷涂 颗粒物 0.224 11.2 0.671 DA003 非甲烷总烃 0.058 2.9 0.173 辊涂、淋涂 DA004 非甲烷总烃 0.05 5 0.151 颗粒物 0.137 6.9 0.412 2#厂房 油性漆喷涂 **DA005** 0.050 2.5 醋酸丁酯 0.151 非甲烷总烃 0.137 6.9 0.411

表 6.2-24 大气污染物有组织排放核算表

文化片					有组织	
产生位置	工序	排气筒 编号	污染物	速率 (kg/h)	浓度 (mg/m³)	排放量(t/a)
			二甲苯	0.036	2	0.107
			TVOC	0.137	6.9	0.411
	水性漆喷涂	DA 006	颗粒物	0.224	11.2	0.671
	1	DA006	非甲烷总烃	0.058	2.9	0.173
	水性漆喷涂	DA 007	颗粒物	0.224	11.2	0.671
	2	DA007	非甲烷总烃	0.058	2.9	0.173
	辊涂、淋涂	DA008	非甲烷总烃	0.05	5	0.151
1#厂房	木工1	DA009	颗粒物	0.008	1.639	0.025
1# <i>) </i> 方 	木工 2	DA010	颗粒物	0.008	1.639	0.025
2#厂房	木工1	DA011	颗粒物	0.008	1.639	0.025
2#) /方	木工 2	DA012	颗粒物	0.008	1.639	0.025
1世世史	批灰、打磨1	DA013	颗粒物	0.278	27.8	0.834
1#厂房	批灰、打磨 2	DA014	颗粒物	0.139	27.8	0.417
2世广臣	批灰、打磨1	DA015	颗粒物	0.278	27.8	0.834
2#厂房	批灰、打磨 2	DA016	颗粒物	0.139	27.8	0.417
			界	 颗粒物		6.11
			Z	酸酯类		0.302
-	一般排放口合计		非	甲烷总烃		1.816
			Ż	苯系物		0.214
				ГVОС		1.816
			 果	 颗粒物		6.11
			Z	0.302		
7	有组织排放总计		非	1.816		
			Ź		0.214	
				ГVОС		1.816

表 6.2-25 大气污染物无组织排放核算表

	排			国家或地方污染物排放标	示准	
序号	放编号	编 环节 污染物		标准名称	浓度限值/ (mg/m³)	年排放量 /(t/a)
		涂	颗粒物	《大气污染物综合排放标准》 (GB16297-1996)	1.0	2.73
1	1# 广	装、 批	醋酸丁酯	《工业涂装工序大气污染物排放 标准》(DB33/2146-2018)	0.5	0.168
	房	灰、 打磨	非甲烷总 烃	《工业涂装工序大气污染物排放 标准》(DB33/2146-2018)	4.0	0.641
			二甲苯	《工业涂装工序大气污染物排放	2.0	0.119

				标准》(DB33/2146-2018)					
			TVOC	《工业涂装工序大气污染物排放 标准》(DB33/2146-2018)	参照非甲烷 总烃标准: 4.0	0.641			
	2# 厂 房	厂 批	颗粒物	《大气污染物综合排放标准》 (GB16297-1996)	1.0	2.73			
			涂	涂	涂	醋酸丁酯	《工业涂装工序大气污染物排放标准》(DB33/2146-2018)	0.5	0.168
2			非甲烷总 烃	《工业涂装工序大气污染物排放 标准》(DB33/2146-2018)	4.0	0.641			
			二甲苯	《工业涂装工序大气污染物排放 标准》(DB33/2146-2018)	2.0	0.119			
			TVOC	《工业涂装工序大气污染物排放 标准》(DB33/2146-2018)	参照非甲烷 总烃标准: 2.0	0.641			
				颗粒物		5.46			
	40 40 1 11	: th		醋酸丁酯		0.336			
	组织排 计	八心		非甲烷总烃		1.282			
	1			二甲苯		0.238			
				TVOC		1.282			

本项目区域为城市环境空气质量达标区域,本项目污染物在切实落实废气处 理措施的基础上,对周边环境影响不大。综上所述,本项目环境影响评价结论是 环境可接受的。

6、大气环境防护距离设定

根据《环境影响评价技术导则大气环境》(HJ2.2-2018),对于项目厂界浓度满足大气污染物厂界浓度限值,但厂界外大气污染物短期浓度超环境质量浓度限值的,可以自厂界向外设置一定范围的大气环境防护区域,以确保大气换防护区域外的污染物贡献浓度满足环境质量标准。大气防护距离内不应有长期居住的人群。本项目厂界外大气污染物浓度均小于环境质量浓度限值,故项目无需设置大气环境防护距离。

6.2.4 营运期声环境影响分析

1、项目主要噪声源强

项目噪声主要来自于生产过程中生产设备和治理设施配套的风机、水泵等设备噪声,主要噪声源情况见第三章节表 4.2-17~4.2-18。

2、预测模式

预测模式采用HJ2.4-2021 推荐的室外点声源衰预测模式和室内声源等效为室外声源预测模式,具体如下。

(1) 室外的点声源在预测点产生的声级计算基本公式

本次室外声源传播衰减不考虑大气吸收、地面效应、障碍物屏蔽等因素引起的噪声衰减,仅考虑几何发散引起的噪声衰减,根据HJ2.4-2021,声源处于半自由场时,几何发散引起的噪声衰减采用如下公式进行计算:

式中: L_{A (r)} — 距声源r处的A声级, dB(A):

LAw—点声源处计权声功率级 A 声级, dB:

r—预测点距声源的距离, m;

(2) 室内声源等效为室外声源计算基本公式

根据 HJ2.4-2021 中"附录 B.1.3 室内声源等效室外声源声功率级计算方法",室内声源等效为室外声源可按如下步骤进行。如下图所示,声源位于室内,室内声源可采用等效室外声源声功率级法进行计算。设靠近开口处(或窗户)室内、室外 A 声级分别为 Lp1 和 Lp2。若声源所在室内声场为近似扩散声场,则室外的 A 声级可按下式近似求出,然后按室外声源预测方法计算预测点出的 A 声级。

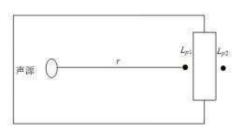


图 6.2.19 室内声源等效为室外声源图例

式中: Lp1—靠近开口处(或窗户)室内 A 声级, dB;

Lp2—靠近开口处(或窗户)室外 A 声级, dB;

TL—隔墙(或窗户)的隔声量,dB;

计算某一室内声源靠近围护结构处产生的倍频带声压级或 A 声级:

$$L_{p1} = L_w + 10\lg\left(\frac{Q}{4\pi r^2} + \frac{4}{R}\right) \tag{\triangle $\stackrel{?}{\Longrightarrow} 3$}$$

式中: Lp1—靠近开口处(或窗户)室内 A 声级, dB:

Lw—点声源声功率级(A 计权或倍频带),dB:

Q—指向性因素;通常对无指向性声源,当声源放在房间中心时,Q=1; 当放在一面墙的中心时,Q=2;当放在两面墙夹角处时,Q=4;当放在三面墙夹 角处时,Q=8;

R—房间常数,R=S α (1- α),S 为房间内表面面积, m^2 ,a 为平均吸声系数,0.1。

r—声源到靠近围护结构某点处的距离, m。

(3) 叠加影响公式

a)建设项目声源在预测点产生的贡献值(Leqg)计算公式如下:

$$L_{eqg} = 10 \lg \left[\frac{1}{2} \left(\sum_{i=1}^{n} t_i \ 10^{0.1 L_{Ai}} + \sum_{i=1}^{n} t_i \ 10^{0.1 L_{Aj}} \right) \right]$$
 (公式 4)

式中: Leqg——建设项目声源在预测点产生的噪声贡献值, dB(A);

N——室外声源个数;

T——用于计算等效声级的时间, s;

ti——在T时间内i 声源的工作时间, s:

M—— 等效室外声源个数;

ti——在 T 时间内 i 声源的工作时间, s。

b) 预测点的预测等效声级(Leq) 计算公式如下:

$$L_{eq}=10$$
lg $(10^{0.1L_{eqg}}+10^{0.1L_{eqb}})$ (公式 5)

式中: Leqg——建设项目声源在预测点产生的噪声贡献值, dB(A);

Legg——建设项目声源在预测点产生的噪声贡献值,dB(A):

Leqb——预测点的背景噪声值,dB(A)。

3、噪声预测结果

根据上述模式及结合项目平面布置情况,项目噪声预测及评价结果汇总见表 6.2-27。

预测点	东侧	南侧	西侧	北侧
贡献值	53.6	52.4	53.8	51.2
昼间噪声达标值	65	70	65	65
是否达标	达标	达标	达标	达标

表 6.2-27 项目厂界噪声预测结果汇总一览表(单位: dB(A))

从预测结果可知, 通过采取本环评报告提出的相关噪声防治措施, 项目生产

车间噪声对项目厂界东、西、北侧的噪声贡献值均达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类标准值,南侧达到4类标准值。企业夜间不进行生产,设备随着下班后停止运行,运行噪声随之消失,故对夜间不会对周围环境产生影响。

因此,项目噪声达标排放对环境影响不大。

6.2.5 营运期固体废弃物环境影响分析

根据工艺分析,项目营运期间产生的固体废物主要为边角料、木质粉尘,漆渣,废包装桶,废砂纸,收集的打磨、批灰粉尘,废包装材料,污泥,废活性炭,废催化剂,废布袋,职工生活垃圾。固体废物产生情况及治理措施见表 6.2-28。

序号	固体废物名称	产生工序	形态	属性	废物代码	预测产生 量 t/a	处置情况
1	边角料、木质粉 尘	木工工序	固态	一般固废	/	121.32	外售综合利用
2	漆渣	喷漆	固态	危险固废	HW12/900-252- 12	43.425	委托有资质单 位处置
3	废包装桶	油漆和胶粘剂 使用	固态	危险固废	HW49/900-041- 49	3.155	委托有资质单 位处置
4	废砂纸	打磨	固态	一般固废	/	1.4	外售综合利用
5	收集的打磨、批 灰粉尘	打磨、批灰	固态	危险废物	HW12/900-252- 12	24.9	委托有资质单 位处置
6	废包装材料	原料使用	固态	一般固废	/	1	外售综合利用
7	污泥	废水处理	固态	危险废物	HW12/900-252- 12	6.375	委托有资质单 位处置
8	废活性炭	废气处理	固态	危险废物	HW49/900-039- 49	5t/2 年	委托有资质单 位处置
9	废过滤棉	废气处理	固态	危险废物	HW12/900-252- 12	1.2	委托有资质单 位处置
10	废催化剂	废气处理	固态	危险废物	HW50/772-007- 50	2t/2 年	委托有资质单 位处置
11	废布袋	废气处理	固态	一般固废	/	0.2	外售综合利用
12	生活垃圾	职工生活	固态	一般固废	/	120	环卫部门清 运、处置

表 6.2-28 项目固废源强汇总表 单位: t/a

1、一般固体废物环境影响分析

边角料、木质粉尘、废砂纸、废包装材料、废布袋收集后出售综合利用;生活垃圾分类收集后委托环卫部门统一清运处置,对环境的影响不大。

2、危险废物环境影响分析

本项目危险废物为漆渣(HW12)、废包装桶(HW49)、收集的打磨、批 灰粉尘(HW12)、污泥(HW12)、废活性炭(HW49)、废过滤棉(HW12) 及废催化剂(HW50),产生量约 86.055t/a。

(1) 危险废物贮存场所(设施)环境影响分析

项目危险废物贮存场所设于厂区南侧内,面积约72m²,设计贮存能力为30t,根据分析,项目危险废物产生量为86.055/a,每年转运三次,每次转运量约28.7t,因此项目危险废物贮存场所可以满足本项目危险废物贮存的要求。

本项目对危险废物进行密闭储存,则危险废物贮存过程中不会产生废水、废气等污染物,只要建设单位严格落实《危险废物贮存污染控制标准》(18597—2023)中的相关要求,本项目危险废物贮存过程中不会对环境空气、地表水、地下水、土壤以及环境敏感保护目标产生明显影响。

(2) 运输过程的环境影响分析

本项目所暂存的危险废物,全部采用公路运输,委托有相应运输资质的运输公司运输至有资质的危废处置单位,并且使用特殊标志的专业运输车辆。在正常操作运输情况下,发生交通事故概率较低,运输过程基本不会对环境产生影响。但在暴雨、阴雨天、台风、大雾及冬季下雪路面结冰等恶劣天气下,交通事故发生概率会随之上升。危险废物一旦散落,将对水体、土壤等环境产生影响。因此,只要企业在运输过程中加强环境管理,确保危险废物不在运输及装卸过程中的破损遗洒和扬散,基本不会对环境造成影响。

(3) 委托处置的环境影响分析

本项目危险废物委托专业资质单位处置,危险废物可委托浙江省危险废物经营单位名单内具有本项目危险废物处理资质的公司处置。因此本项目危险废物最终委托有资质单位处置,对环境影响不大。

根据《固体废物鉴别标准 通则》(GB34330-2017)中的 6.1 条款"任何不需要修复和加工即可用于其原始用途的物质,或者在产生点经过修复和加工后满足国家、地方制定或行业通行的产品质量标准并且用于其原始用途的物质",可不作为固体废物管理。

综上所述,本项目废包装桶也可由原生产厂家直接回收重新用于原始用途。 在此前提下,废包装桶可不作为固废,但在暂存等管理过程中要参照危废管理

要求进行管理。

6.2.6 营运期土壤环境影响评价

1、土壤环境敏感目标调查

经实地调查,本项目 200m 范围内无耕地、园地、牧草地、饮用水水源地或居民区、学校、医院、疗养院、养老院等土壤环境敏感目标和其他土壤环境敏感目标。

2、土壤环境影响类型及途径

根据《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)附录 B, 本项目土壤影响类型及影响途径见下表。

I	不同时期		污染影响型		生态影响型		
小胆	个问时别	大气沉降	地面浸流	垂直入渗	大气沉降	地面浸流	垂直入渗
	建设期	/	√	$\sqrt{}$	/	/	/
	运营期	√	√	√	/	/	/

表 6.2-29 本项目土壤影响类型与途径表

根据上表判断,本项目属于土壤污染影响型项目,本项目可能造成土壤环境影响的污染源及影响因子见下表。

污染源	工艺流程/节点	污染途径	全部污染物指标	特征因子	备注
污水处理设施	喷淋废水处理	垂直入渗	COD、氨氮等	/	事故
油漆仓库	原料储存	垂直入渗	COD、挥发性有机物	/	事故
危废仓库	固废储存	垂直入渗	COD、挥发性有机物	/	事故
油漆废气排气	废气排放	大气沉降	颗粒物、二甲苯、乙	/	连续
筒	及切形以	八 (<i>f</i>)LP年	酸酯类、TVOC 等	/	

表 6.2-30 本项目土壤环境影响源及影响因子识别见表

3、土壤环境影响识别及评价因子筛选

根据工程分析、环境影响因素识别及判定结果,确定本项目环境影响要素的评价因子见下表。

环境要素	现状评价因子	预测/影响评价因子
	HM(重金属 7 项)、VOC(挥发性有机物 27	大气沉降: 苯系物(二甲苯)
土壤环境	项)、SVOC(半挥发性有机物 11 项)+pH 值、	地面漫流和垂直入渗:
	石油烃、二甲苯	COD _{Cr} 、氨氮等

表 6.2-31 评价因子筛选

4、预测评价范围、时段

由导则判据可得本项目土壤环境影响评价的工作等级为二级。依据导则表

5,项目土壤预测范围为本项目厂界外扩 0.2km。

项目的预测评价范围与调查评价范围一致,评价时段为项目运营期。

5、土壤环境影响分析

(1) 大气沉降途径土壤环境影响预测

根据工程分析,苯系物(二甲苯)排放量为 0.452t/a。本次评价按最不利情况,所有苯系物均在评价范围内沉降。根据大气环境影响预测,有组织废气最大落地浓度出现在 179m 处,无组织废气最大落地浓度出现在 99m。本次评价按照厂界外延 1km 区域作为预测评价范围(合计面积约 457hm²),即苯系物(二甲苯)废气全部沉降在该区域内。

本环评采用《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)附录 E.1 中的方法进行预测。选取废气中的苯系物(二甲苯)作为预测因子。

采用如下公式计算单位质量土壤中苯系物的增量:

$\triangle S=n(Is-Ls-Rs)/(\rho b \times A \times D)$

式中: △S--单位质量表层土壤中某种物质的增量, g/kg;

Is--预测评价范围内单位年份表层土壤中某种物质的输入量, g;

Ls--预测评价范围内单位年份表层土壤中某种物质经淋溶排出的量, g;

Rs--预测评价范围内单位年份表层土壤中某种物质经径流排出的量, g;

ρb--表层土壤容重, kg/m³;

A--预测评价范围, m²;

D--表层土壤深度, 取 0.5m;

n--持续年份, a。

表 6.2-32 本项目取值参数及依据

项目	取	值	取值说明
Is	苯系物 (二甲苯)	0.452t	乙酸酯类、TVOC 无相关土壤环境质
15	本が初(二十本)		量标准
Ls	0	g	地面将硬化,不考虑土壤淋溶排出量
Rs	0	g	地面将硬化,不考虑土壤径流排出量
ρb	$1.32 \times 10^3 \text{kg/m}^3$		根据土壤实测数据
A	457×1	10^4m^2	占地范围内及其外侧 1km 范围
D	0.5m		根据土壤实测数据
n	8	1	取 1-30 年

将上述参数代入计算公式可得,对评价区域内项目达产运营后正常状态下

1-30 年后, 土壤中污染物质累积量预测结果见下表所示。

第二类用 单位增量 预测值 背景值 累积时间 评价指标 地筛选值 达标情况 $\triangle S (mg/kg)$ (mg/kg) (mg/kg) (mg/kg) 1年 二甲苯 $<1.2\times10^{-3}$ 达标 0.15 0.15 570 5年 <1.2×10⁻³ 二甲苯 0.75 0.75 570 达标 15年 二甲苯 2.25 $<1.2\times10^{-3}$ 2.25 570 达标 20年 二甲苯 $<1.2\times10^{-3}$ 达标 3 570 3 25年 二甲苯 $<1.2\times10^{-3}$ 达标 3.75 3.75 570 570 30年 二甲苯 4.5 $<1.2\times10^{-3}$ 4.5 达标

表 6.2-33 评价区域内土壤中污染物累积量预测结果一览表

由表 5.2-29 预测结果可知,项目投产运营后 30 年内二甲苯在评价区域土壤中的累积量(叠加背景值后)均在《土壤环境质量-建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地的筛选值范围内。

只要企业做好废气的收集及处理工作,本项目对土壤环境的影响较小。非正常工况,废气沉降对周边土壤环境有一定影响,企业需采取措施避免非正常工况发生。

综上,本项目在大气沉降方面土壤环境影响可接受。

(2) 地面漫流

对于地上设施,在事故情况和降雨情况下产生的废水会发生地面漫流,进一步污染土壤。企业设置废水三级防控,设置围堰拦截事故水,进入事故缓冲池,当事故缓冲池储满,事故水进一步进入厂外末端事故缓冲池,此过程由各阀门,溢流井等调控控制,保证可能受污染的雨水截留至雨水明沟,最终进入厂外末端事故缓冲池。全面防控事故废水和可能受污染的雨水发生地面漫流,进入土壤。在全面落实三级防控措施的情况下,物料或污染物的地面漫流对土壤影响较小。

(3)垂直入渗

对于地下或半地下工程构筑物,在事故情况下,会造成物料、污染物等的泄露,通过垂直入渗进一步污染土壤。本项目参照《石油化工工程防渗技术规范》(GB/T50934-2013)中的要求,根据场地特性和项目特征,制定分区防渗。对于地下及半地下工程构筑物采取重点防渗,对于可能发生物料和污染物泄露的地上构筑物采取一般防渗,其他区域按建筑要求做地面处理。防渗材料应与物料或污染物相兼容,其渗透系数应小于等于 1.0×10-7cm/s。在全面落实分区防渗措施的情况下,物料或污染物的垂直入渗对土壤影响较小。

4、土壤评价结论

本项目通过定量与定性相结合的办法,从大气沉降、地面漫流和垂直入渗三个影响途径,分析项目运营对土壤环境的影响。项目投产运营后 30 年内二甲苯在评价区域土壤中的累积量(叠加背景值后)均在《土壤环境质量-建设用地土壤污染风险管控标 准(试行)》(GB36600-2018)中第二类用地的筛选值范围内。同时在企业做好三级防控和分区防渗措施的情况下,地面漫流和垂直入渗对土壤的影响较小。

综上,项目运营对土壤的影响较小。

6.2.7 生态环境影响评价

1、对植被资源的影响

本项目运营期排放的大气污染物主要包括颗粒物、苯系物、乙酸酯类、TVOC等。根据大气影响预测结果可知,本项目废气污染物均能达标排放,对植被一般影响不大;本项目固废全部妥善处置不外排,生产、生活废水处理达标后纳管排放,不会对周边生态环境造成明显影响。

2、对动物多样性的影响

根据研究,在项目区持续噪声影响下,适应人为干扰能力较弱的动物会本能的向周边山体迁移,适应人为干扰能力较强的动物会在项目运行期逐渐迁回。根据调查和有关资料,项目区周边都是本地常见动物种类,项目周围不涉及生态保护目标,噪声对保护区内的动物影响不大。

综上所述, 本项目对生态环境影响可接受。

7环境风险分析

7.1 风险评价目的和重点

根据《环境影响评价技术导则总纲》中第 7.4.4 条规定"在建设项目实施过程中,由于自然或人为原因所酿成的爆炸、火灾、中毒等后果十分严重的,造成人身伤害或财产损失的事故,属风险事故。是否进行环境风险评价,应视工程性质、规模、建设项目所在地环境特征以及事故后果等因素确定。"

环境风险评价的目的是分析和评价建设项目存在的潜在风险、有害因素,企业运营期间可能发生的突发性事件或事故,引起有毒有害和易燃易爆等物质泄漏,所造成的人身安全与环境影响和损害程度,提出合理可行的防范、应急与减缓措施,以使建设项目事故率、损失和环境影响达到可接受水平。

环境风险评价应把事故引起厂界外人群的伤害、环境质量的恶化及对生态系统的影响分析和防护作为评价工作重点。

7.1 项目环境风险调查

7.1.1 风险源调查

对照《建设项目环境风险评价技术导则》(HJ169-2018)附录 B,项目涉及的危险物质主要为溶剂型涂料(苯系物、乙酸酯类等)、水性涂料、胶粘剂、危险废物等,项目危险物质厂区内存在情况见表 7.1-1。

风险源	储存物料	地去具,	物质名称	百分	《导则》附录 B	危险物
	怕任初件	储存量 t	初灰名M	比	中 危险物质	质折算 量 t
	水性面漆	3.2	二丙二醇丁醚	3.6	健康危险急性	0.1152
	水性底漆	水性底漆 3.4 二		2.8	毒性物质(类别 2,类别 3)	0.0952
原料仓	水性固化剂	0.7	六亚甲基二异 氰酸酯	70	健康危险急性 毒性物质(类 别 1)	0.49
库			丙二醇甲醚醋 酸酯	30	健康危险急性 毒性物质(类 别 2,类别 3)	0.21
	油性面漆	0.8	醋酸丁酯	7	参照乙酸乙酯	0.056
	油性底漆	0.8	醋酸丁酯	5	参照乙酸乙酯	0.04

表 7.1-1 项目风险源调查情况表

	油性固化剂	0.3	TDI	0.5	TDI	0.0015
	何年四代剂 0.3		醋酸丁酯	34.5	参照乙酸乙酯	0.1035
	油性稀释剂	0.6	丙二醇甲醚醋 酸酯	50	健康危险急性 毒性物质(类 别 2,类别 3)	0.3
			醋酸丁酯	15	参照乙酸乙酯	0.09
			二甲苯	35	二甲苯	0.21
	UV 辊涂底漆	3.6	非甲烷总烃	3.1	健康危险急性 毒性物质(类 别2,类别3)	0.1116
危废仓库	危险废物	23.2	漆渣、废包装 桶、收集的打 磨、批灰粉尘、 污泥、废活性炭 及废催化剂等	100%	健康危险急性 毒性物质(类 别 2,类别 3)	23.2

7.1.2 环境敏感目标调查

根据调查,项目周边的主要环境保护目标见表 2.5-1、图 2.5.1。

7.2 环境风险潜势初判

根据建设项目涉及的物质和工艺系统的危险性及其所在地的环境敏感程度,结合事故情形下环境影响途径,对建设项目潜在环境危害程度进行概化分析,按照表 7.2-1 确定环境风险潜势。

万·安禄 咸积 庄 (E)	危险物质及工艺系统危险性(P)						
环境敏感程度(E)	极高危害(P1)	高度危害 (P2)	中度危害(P3)	轻度危害(P4)			
环境高度敏感区 (E1)	IV+	IV	III	III			
环境中度敏感区 (E2)	IV	III	III	II			
环境低度敏感区 (E3)	III	III	II	I			
注: IV+为极高环境风险。							

表 7.2-1 建设项目环境风险潜势划分

(1) 危险物质及工艺系统危险性(P)分级

①危险物质数量与临界量比值(Q)

计算所涉及的每种危险物质在厂界内的最大存在总量与其在《导则》附录 B 中对应临界量的比值 Q。在不同厂区的同一种物质,按其在厂界内的最大存在总量计算。对于长输管线项目,按照两个截断阀室之间管段危险物质最大存在总量

计算。

当只涉及一种危险物质时, 计算该物质的总量与其临界量比值, 即为 Q; 当存在多种危险物质时,则按式(C.1)计算物质总量与其临界量比值(Q):

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \cdots + \frac{q_n}{Q_n}$$

式中: q_1 , q_2 , ..., q_n ——每种危险物质的最大存在总量, t; Q_1 , Q_2 , ..., Q_n ——每种危险物质的临界量, t。

当 Q<1 时,该项目环境风险潜势为 I。

当 Q≥1 时,将 Q 值划分为: (1) 1≤Q<10; (2) 10≤Q<100; (3) Q≥100。

根据分析,本项目厂界内储存的纳入《导则》附录 B 的危险物质在厂界内存在量与临界量比值见下表 7.2-2。

序号	物质名称	最大储存量(t)	临界量(t)	比值 q/Q	比值合计
1	二丙二醇丁醚	0.2104	50	0.0042	
2	六亚甲基二异氰酸 酯	0.49	5	0.098	
3	丙二醇甲醚醋酸酯	0.51	50	0.0102	
4	醋酸丁酯	0.2895	10	0.02895	0.62005
5	TDI	0.0015	5	0.0003	0.63905
6	二甲苯	0.21	10	0.021	
7	非甲烷总烃	0.1116	50	0.0022	
8	乙酸乙烯酯	0.102	10	0.0102	
9	危险废物	23.2	50	0.464	

表 7.2-2 危险物质数量与临界量比值(Q)

由上表可知,本项目危险物质数量与临界量比值(Q)<1,环境风险潜势为I。

根据上表判断,项目环境风险潜势判断为 I ,根据《建设项目环境风险评价技术导则》(HJ 169-2018),风险潜势判断为 I 的可进行简单分析。

7.3 风险分析

1、环境影响途径及危害后果

根据项目特征,可能出现的事故及其环境影响包括以下几点:

(1) 危险物质泄漏:项目涉及的危险物质,如油漆包装容器破损、堆码不 当翻倒、搬运使用、装卸过程操作不当等导致泄漏,危险物质泄漏后收集措施不 当可能进入厂区雨水管道外排,污染水环境;同时泄漏液体在点火源等作用下可引起火灾爆炸。

- (2)火灾、爆炸次生/伴生风险:项目厂区一旦发生火灾、爆炸事故,火灾、爆炸次生/伴生的污染物,如废气排放可导致周边区域短时间内的大气污染,消防废水、燃烧残渣等收集处置不当排放可导致周边水体、土壤污染。
- (3)末端处置过程风险:厂内废气处理装置可能因为停电、设备老化、故障等出现非正常运转或停止运转,导致废气事故性排放,影响车间及周围大气环境;污水收集及处理系统毁坏或其它事故时,生产废水外溢直接流入附近水体,将对水环境产生一定影响;危险废物收集、储存、处置过程不规范,导致危险废物泄漏、丢失等,可能造成水体、土壤污染,人员中毒。
- (4)车间通风不良或通风设备故障导致有毒、有害物质在车间内富集,引起人员中毒,遇明火、静电火花等发生火灾、爆炸事故。
- (5) 有机废气具有易燃易爆的特性,任何废气处理设备都有起火爆炸的风险。催化燃烧设施处理 VOCs 的过程中,存在以下几种安全隐患:①活性炭吸附——脱附——催化燃烧法中有活性炭起火的现象。②催化氧化炉爆炸问题。③整个催化燃烧治理装置起火爆炸问题。而主要原因又可以分为以下几点:①高温高热;②有明火;③产生静电且静电火花放电能量超过可燃性混合物最小引燃能;④有机废气浓度高于爆炸下限。

2、风险防范措施要求

一般突发性事故发生的风险概率极小,但对环境造成的危害却是十分严重的,因此对本项目投入运行后必须在落实突发性事故的应急对策,以便在事故发生时迅速采取措施,控制事故的影响范围和程度,减轻事故造成的损失和危害,可以采取如下对策:

(1) 强化风风险意识、加强安全管理

安全生产是企业立厂之本,企业一定要强化风风险意识、加强安全管理,具体要求如下:必须将"安全第一预防为主"作为公司经营的基本原则;必须进行广泛系统的培训,使所有操作人员熟悉自己的岗位,树立严谨规范的操作作风,并且在任何紧急状况下都能随时对工艺装置进行控制,并及时、独立、正确地实施相关应急措施。设立安全环保科,负责全厂的安全管理,建立安全生产管理体系

和运行网络;按照《劳动法》有关规定,为职工提高劳动安全卫生条件,提供劳动防护用品,厂区卫生室必须配备足够的医疗药品和其他救助品,便于事故应急处置和救援。

(2) 贮存过程风险防范

贮存危险物质的仓库管理人员,必须经过专业知识培训,熟悉贮存物品的特性,事故处理办法和防护知识,持证上岗,同时,必须配备有关的个人防护用品。 贮存危险化学品的库房、场所的消防设施、用电设施、防雷防静电设施等必须符 合国家规定的安全要求。危险化学品出入库必须检查验收登记,贮存期间定期养护,控制好贮存场所的温度和湿度;装卸、搬运时应轻装轻卸,注意自我防护。

(3) 生产过程风险防范

生产过程事故风险防范是安全生产的核心,要严格采取措施加以防范,尽可能降低事故概率。必须组织专门人员每天每班多次进行周期性巡回检查,有跑冒滴漏或其他异常现象的应及时检修,必要时按照"生产服从安全"原则停车检修,严禁带病或不正常运转。

(4) 末端处理过程风险防范

废气末端治理措施必须确保日常运行,如发现人为原因不开启环保治理设施, 责任人应受行政和经济处罚,并承担事故排放责任及相应的法律责任。若末端治 理措施因故不能运行,则生产必须停止。为确保处理效率,在车间设备检修期间, 末端处理系统也应同时进行检修,日常应有专人负者进行维护。

危险废物收集、储存、处置过程应严格按照危险废物贮存污染控制标准》 (GB18597-2023)中相关规定执行,厂内设置单独的危险废物储存场所,做好防扬散、防雨、防流失渗漏等"三防"措施。

(5) 催化燃烧设施风险防范

- ①严格控制脱附温度,选择质量好的脱附温度传感器,尽可能在活性炭吸附箱合适位置安装两个温度传感器;在 PLC 编程中加入脱附温度超温时停止脱附程序;同时要防患于未然,在活性炭吸附箱上方增加消防水管并连接烟气报警及自动喷淋装置,以防意外失火。
- ②要时刻监测炉内 VOCs 浓度,在进入催化氧化炉的废气管道上安装浓度 稀释装置,将高浓度废气稀释到爆炸极限下。同时在催化氧化炉上增加压力排气

- 阀,在压力过高时自动打开阀门进行减压排气,以防炉内温度压力过高引起爆炸 (因废气在热氧化过程中迅速释放大量热能导致炉内热空气压力过大)。
- ③安装高质量风阀,经常检查漏气情况,单套吸附的装置系统中在脱附催化燃烧过程中应停产处理等。
 - (6) 其它风险防范措施
- ①根据消防要求配备灭火器、消火栓、应急池等消防设备,同时定期对上述设备进行检查,确保消防设施处于正常状况下。
- ②车间应设置通风设备,保持车间空气流通顺畅,经常性的对通风设备进行 检修,确保设备正常运行;同时应配备有备用的通风设备。

7.4 事故应急池

应急池容积参照中石化安环[2006]10 号文发布的《水体环境风险防控要点 (试行)》计算,公式如下:

$$V = (V_1 + V_2 - V_3) \max_{max} + V_4 + V_5$$

式中: $V_{\&}$ ——事故储存设施总有效容积; 式中 $(V_1+V_2-V_3)_{max}$ 是指对收集系统范围内不同罐组或装置分别计算 $V_1+V_2-V_3$,取其中最大值;

 V_1 ——收集系统范围内发生事故的一个罐组或一套装置的物料量, V_1 取 0;

 V_2 ——发生事故的储罐或装置的消防水量, m^3 :

$$V_2 = \sum Q_{ij} t_{ij}$$

O₁₈——发生事故的储罐或装置的同时使用的消防设施给水流量, m³/h;

t :-----消防设施对应的设计消防历时, h:

 V_3 ——发生事故时可以转输到其他储存或处理设施的物料量, m^3 ; 取 0;

 V_4 ——发生事故时仍必须进入该收集系统的生产废水量, m^3 ; 取 0;

 V_5 ——发生事故时可能进入该收集系统的降雨量;

根据《建筑设计防火规范》,仓库高度 \leq 24m,体积 \leq 5000m³,同时使用水枪数量 1 支,每根竖管最小流量 10L/s,发生火灾,一般在 1h 以内即可完全控制,因此,消防时间按 1h 计可满足要求,则 $V_2=\sum Q_{ii}t_{ii}=10*1*3600=36m³$ 。

$$V_5=10qF$$

q——降雨强度, mm; 按平均日降雨量;

ga——年平均降雨量, mm; 丽水市年平均降雨量, 取 ga=1399.6mm;

n——年平均降雨日数, 计算时 n 取 100 天:

F——必须进入事故废水收集系统的雨水汇水面积,ha; (车间外围区域 0.05ha)。

则 V₅=10qF=7m³

经计算, V_{g} =0+36+7=43m3,考虑一定的富余,因此,建议应急池设计容积为45m3。

- (1)建立事故排放事先申报制度,未经批准不得排放,便于相关部门应急 防范,防止出现超标排放。
- (2)根据《危险废物贮存污染控制标准》(GB18597-2023)中的规定设置专用的危险废物贮存场所,贮存场所进行防渗处理、防雨、设置醒目的标志,制订危废管理制度,建立危废产生台账,对危险废物实行严格管理,生产班组与公司危废暂存库实行专人负责交接。危险废物委托有资质的单位进行转移、处置,做好转移联单、台账等记录。
- (3)加强管理,定期对废气收集、处理设施进行维护、检修,确保生产过程中废气处理设施正常运行:
 - (4) 风机等动力设备应有备用,在设备故障时可立即启用备用设备;
- (5)根据《浙江省突发环境事件应急预案编制导则(企业版)》、《浙江省企业环境风险评估技术指南(第二版)》、《浙江省企业事业单位突发环境事件应急预案备案管理实施办法(试行)》等相关法律法规要求制定突发环境事件应急预案。

7.5 建立环境风险"三级防控"体系

- 一级防控措施:设置围堰和导排系统防止事故泄漏造成环境污染事故,全厂各生产线凡在开停工、检修过程中可能有有毒液体泄漏、漫流的设备区周围设置收集设施。
- 二级防控措施:全厂设置初期雨水截流系统,在事故状态时,可将泄漏物料及消防废水等通过雨水明沟引入应急收集系统暂存,防止污染物进入地表水水体,同时各车间、仓库地面做好截流防渗措施。
- 三级防控措施:厂区雨污水总排口设置切断措施,防止事故情况下物料经总排口外排。同时,在厂区各门口处应备有沙袋或阻流袋,一旦发生重大泄漏或火

灾事故,可用沙袋或阻流袋筑堤拦截,防止泄漏物或消防废水通过厂门排放。

7.6 环境风险事故应急预案

《中华人民共和国安全生产法》、《中华人民共和国职业病防治法》、《中华人民共和国消防法》、国务院《危险化学品安全管理条例》、国务院《关于特大安全事故行政责任追究的规定》、国务院《使用有毒物品作业场所劳动保护条例》、国务院《特种设备安全监察条例》都明确要求企业应编制应急预案。

1) 应急预案基本原则

由于企业各类风险因素较多,无论预防工作如何周密,风险事故总是难以根本杜绝,必须制订风险事故应急预案。制订预案的目的是要迅速而有效地将事故损失减至最小,应急预安原则如下:

- ①按照国家和行业的"安全生产"要求提出的具体方案制定项目应急预案。
- ②与当地消防部门保持畅通的联终渠道,随时可获得消防部门的指导、监督, 出现险情时可随时取得支持。
 - ③确定救援组织、队伍和联络方式。
 - ④制定事故类型、等级和相应的应急响应程序。
 - ⑤配备必要的救灾防毒器具及防护用品。
 - ⑥对生产系统制定应急状态切断或剂量控制以及自动报警连锁保护程序。
 - ⑦岗位培育和演习,设置事故应急学习手册及报告、记录和评估。
- ⑧制定区域防灾救援方案,厂外受影响人群的疏散、撤离方案,与当地政府、 消防、环保和医疗救助等部门加强联系,以便风险事故发生时得到及时救援。

2) 应急预案纲要

表 7.6-1 环境风险的突发性事故应急预案

序号	项目	内容及要求
1	应急计划区	危险目标:装置区、仓库、环境保护目标
2	应急组织机构、人员	工厂、地区应急组织机构、人员
3	预案分级响应条件	规定预案的级别及分级响应程序
4	应急救援保障	应急设施,设备与器材等
5	报警、通讯联络方式	规定应急状态下的报警通讯方式、通知方式和 交通保障、管制
6	应急环境监测、抢险、救援及控 制措施	由专业队伍负责对事故现场进行侦察监测,对 事故性质、参数与后果进行评估,为指挥部门 提供决策依据

7	应急检测、防护措施、清除泄漏	事故现场、邻近区域、控制防火区域,控制和
,	措施和器材	清除污染措施及相应设备
	 人员紧急撤离、疏散,应急剂量	事故现场、工厂邻近区、受事故影响的区域人
8	八贝系志撤西、屼舣,应志州里	员及公众对毒物应急剂量控制规定,撤离组织
	江門、	计划及救护,医疗救护与公众健康
	 事故应急救援关闭程序与恢复	规定应急状态终止程序
9		事故现场善后处理,恢复措施
措施		邻近区域解除事故警戒及善后恢复措施
10	应急培训计划	应急计划制定后,平时安排人员培训与演练
11	公众教育和信息	对工厂邻近地区开展公众教育、培训和发布有
11	公从叙自和信心 	关信息

本环评对预案仅作简要叙述,要求企业按照应急预案编制导则编制应急预 案。

3) 应急预案的编制

建设单位应根据《浙江省突发环境事件应急预案编制导则(企业版)》、《浙 江省企业环境风险评估技术指南(第二版)》、《浙江省企业事业单位突发环境 事件应急预案备案管理实施办法(试行)》等相关法律法规要求制订突发环境事 件应急预案,该预案可由建设单位自行编制或委托相关专业技术服务机构进行编 制,委托相关专业技术服务机构编制的,企业指定有关人员全程参与;突发环境 事件应急预案应当在环境保护设施竣工验收前(需要进行试生产的新建、改建、 扩建项目,应当在项目试生产前)完成环境应急预案的编制,并按照相关法规要 求,向建设项目所在地境保护主管部门备案。

7.7 环境风险评价结论

该建设项目存在一定潜在事故风险,只要建设单位加强风险管理,在项目建设、实施过程中认真落实各种风险防范措施,通过相应的技术手段降低风险发生概率,并在风险事故发生后,及时采取风险防范措施及应急预案,可以使风险事故对环境的危害得到有效控制,将事故风险控制在可以接受的范围内,因此,该项目事故风险水平是可以接受的。

8 环境保护措施及其可行性论证

8.1 施工期污染防治措施

1、施工期大气污染防治对策与措施

为减少施工期间产生的扬尘对周围环境的影响,建议建设单位、施工单位采取如下措施:

- (1)加强现场管理,做到标准化施工和文明施工,制定并落实相关扬尘污染控制的规章制度,严格控制扬尘污染;
- (2) 工地应有专人负责路面洒水,一般洒水频率不得少于 4 次/天,如遇连续高温或风速较大等天气,应增加洒水频次来有效控制扬尘污染;
 - (3) 施工工地应严格按照有关法律法规的规定使用商品混凝土;
- (4)运输砂石、土方、灰浆、垃圾、渣土等易产生扬尘污染的物料时不宜 装载过满,同时,应当实行密闭化运输,不得沿路泄漏、遗撒。
- (5)场地物料堆放整齐,沙石等易产生扬尘污染的污染源位置应合理设置, 并用彩料布等进行遮盖:
- (6) 渣土等建筑垃圾必须定期清运,清运过程中采用封闭式运输车,保证 扬尘不飞散:
- (7) 工地内应当根据行政主管部门的要求,设置相应的车辆冲洗设施和排水、泥浆沉淀设施,车辆进出工地时必须用高压水泵冲洗干净,在冲洗后方可进入道路,不得将施工现场的渣土带入道路;
- (8) 合理安排施工运输工作,对于施工作业中的物资及弃土的运输,应尽量避开交通高峰期,以缓解交通压力。同时,施工单位应与交通管理部门应协调一致,采取响应的措施,做好施工现场的交通疏导,避免压车和交通阻塞,最大限度的控制汽车尾气的排放。
 - (9) 注意工程车辆保养,保证车辆尾气达标排放。

2、施工期水污染防治对策与措施

工程施工期间,施工单位应对地面水的排放进行组织设计,严禁乱排、乱流污染环境。具体措施如下:

(1) 含有泥沙(浆)、水泥等物质的施工废水,应当由排水单位先行沉淀,

沉淀后作为施工现场洒水、施工车辆冲洗用水回用。

- (2)施工期间设置厕所,供施工人员如厕,厕所废水由化粪池等预处理达标后纳入市政污水管网。
- (3)施工现场四周应设置排水沟渠,沟渠末端设置沉砂池,雨天可将径流水引至沉砂池处理后排放。
- (4)加强施工期间的施工管理,督促施工人员合理操作,减少泥浆水外溢,如若发现有泥浆水外溢,可采用细沙等吸收。
 - (5) 加强用水管理,在不使用水的情况下应关闭水龙头,减少用水浪费。

3、施工期噪声污染防治对策与措施

根据原国家环保局《关于贯彻实施(中华人民共和国环境污染防治法)的通知》(环控[1997]066号)的规定,建设施工单位在施工前应向当地环境保护主管部门申请登记。除抢修、抢险作业和因生产工艺上要求或者特殊要求必须连续作业外,禁止夜间进行产生环境噪声污染的建筑施工作业,"因特殊要求必须连续作业的,必须有县级以上人民政府或者有关主管部门的证明"(《中华人民共和国环境噪声污染防治法》第三十条),并且必须公告附近居民。为减少施工机械、车辆等产生的噪声对周围环境的影响,针对道路建设各阶段的噪声防治措施,建议建设单位、施工单位采取以下措施:

- (1)加强现场管理,做到标准化施工和文明施工,制定并落实相关扬噪声 染控制的规章制度,严格控制噪声污染;
- (2)要求工地合理安排施工工期,尽量避免进入夜间施工,确需进入夜间施工的需严格按照有关规定,经相关部门审批后方可进入夜间施工,施工时间不得超过夜间二十四时:
- (3) 工地应加强现场管理,严禁在施工过程中敲击钢管等导致噪声污染周围环境,尽量减少因人为原因引起的噪声污染;
 - (4) 施工工地应严格按照有关法律法规的规定使用商品混凝土;
 - (5) 物料进场装卸过程中必须做到轻卸、轻放,严禁野蛮施工。
- (6) 合理布局施工场地,避免在同一施工地点安排大量动力机械设备,避免局部声级过高;
 - (7) 降低设备声级,设备选型上尽量采用低噪声设备,如以液压机械代替

燃油机械,振捣器采用高频振捣器等;固定机械设备与挖土、运土机械,如挖土机、推土机等,可通过排气管消声器和隔离发动机振动部件的方法降低噪声;对动力机械设备进行定期的维修、养护;设备常因松动部件的振动或消声器的损坏而增加其工作时的噪声级;暂不使用的设备应立即关闭;

- (8) 高噪声机械设备安装消声器,可放置于施工工棚中的高噪声设备应设施设备工棚,建设噪声对环境的影响;
- (9) 合理安排施工车辆运输路线,尽量远离周围敏感点,施工车辆应严格按照公安交警部门核准的计划路线行驶。

4、施工期固废污染防治对策与措施

为节约资源以及减少施工固废对周围环境的影响,建议建设单位和施工单位 采取如下措施:

- (1)施工期废建筑材料应充分回收利用,不能利用的部分送垃圾填埋场填埋处置,严禁擅自堆放和倾倒到附近的水体。
 - (2) 施工期生活垃圾通过垃圾筒收集,由环卫部门统一清运、处理。
- (3)建设工程开工前,建设单位应当到所在地的区市容环境卫生行政主管 部门办理工程渣土处置手续:
- (4) 工程渣土运输车辆应当符合市市容环境卫生行政主管部门规定的限定 载重吨位和密闭化运输的要求;工程渣土准运证按一车一证核发,未领取准运证 的车辆,不得运输工程渣土;未达到密闭化运输要求的车辆,不予核发工程渣土 准运证。工程渣土准运证不得出借、转让、涂改和伪造;
- (5)禁止在处置场地以外倾倒工程渣土,禁止在处置场地将工程渣土与其他城市生活垃圾、危险废物混合倾倒:
- (6)施工期间剥离的表层土应妥善堆放,表土堆放区应采取防治水土流失的措施,待施工结束后表土用于生态恢复使用。

8.2 营运期污染防治措施其可行性论证

8.2.1 营运期水污染防治措施

1、污染源概述

(1) 生产污水收集

项目厂区应按照"清污分流、雨污分流、污污分流"原则实施设计,对于室内

废水通过车间内污水管道收集,车间外废水输送管道采用专用管道布置,所有废水必须通过明渠明管或架空废水管道的方式输送,废水收集后进入厂区内污水处理设施处理,防止雨污合流增加废水量。

(2) 事故废水收集方案

设置 45m³ 的事故应急池一个,发生事故时,事故源切断应分别设置手、自动系统。这样生产区或仓库内的原料如有泄漏引发火灾等事故发生,第一时间封闭外排闸门,并切换到连通事故应急池,确保泄漏物料、冲洗水及初期雨水可收集至事故应急池,可送废水处理设施处理,防止污染附近水体。

2、废水处理工艺

本项目废水包括喷漆水帘机废水、水喷淋塔废水、批灰打磨除尘水帘机废水和生活废水。废水产生来源及拟采取的环保措施见下表。

序 号	产生环节	特征	废水量 (t/a)	处理措施
1	喷漆水帘机废 水、水喷淋塔废 水	高浓度 COD、 SS	8400	经管道收集后送至污水处理站处理,采取 "芬顿氧化+混凝沉淀+气浮"的处理工艺, 处理达标后纳管排放
2	批灰打磨除尘 水帘机废水	低浓度 COD、 SS、氨氮	3150	经管道收集后送至污水处理站处理,采取 "气浮"的处理工艺,处理达标后纳管排放
3	生活废水	低浓度生活 废水	6000	化粪池/隔油池处理达标后纳管排放

表 8.2-1 废水产生来源及拟采取的环保措施一览表

本项目废水处理站设计处理规模为 50m³/d, 采取"芬顿氧化+混凝沉淀+气浮"的处理工艺, 处理工艺如下:

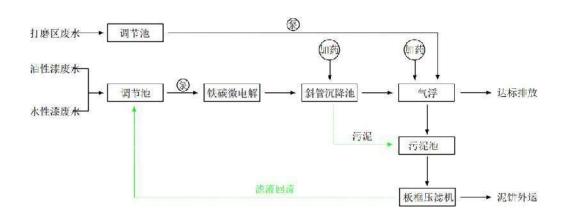


图 8.2.1 项目污水处理站污水处理工艺流程图

芬顿氧化: 1893 年,化学家 Fenton HJ 发现,过氧化氢(H₂O₂)与二价铁离子的混合溶液具有强氧化性,可以将当时很多已知的有机化合物如羧酸、醇、酯类氧化为无机态,氧化效果十分显著。但此后半个多世纪中,这种氧化性试剂却因为氧化性极强没有被太多重视。但进入 20 世纪 70 年代,芬顿试剂在环境化学中找到了它的位置,具有去除难降解有机污染物的高能力的芬顿试剂,在印染废水、含油废水、含酚废水、焦化废水、含硝基苯废水、二苯胺废水等废水处理中体现了很广泛的应用。当芬顿发现芬顿试剂时,尚不清楚过氧化氢与二价铁离子反应到底生成了什么氧化剂具有如此强的氧化能力。二十多年后,有人假设可能反应中产生了羟基自由基,否则,氧化性不会有如此强。因此,以后人们采用了一个较广泛引用的化学反应方程式来描述芬顿试剂中发生的化学反应:

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + (OH)^{-} + \cdot OH$$

芬顿氧化法是在酸性条件下, H_2O_2 在 Fe^{2+} 存在下生成强氧化能力的羟基自由基(·OH),并引发更多的其他活性氧,以实现对有机物的降解,其氧化过程为链式反应。其中以·OH 产生为链的开始,而其他活性氧和反应中间体构成了链的节点,各活性氧被消耗,反应链终止。其反应机理较为复杂,这些活性氧仅供有机分子并使其矿化为 CO_2 和 H_2O 等无机物。从而使 Fenton 氧化法成为重要的高级氧化技术之一。

混凝沉淀池:是给排水中沉淀池的一种。混凝过程是工业用水和生活污水处理中最基本也是极为重要的处理过程,通过向水中投加一些药剂(通常称为混凝剂及助凝剂),使水中难以沉淀的颗粒能互相聚合而形成胶体,然后与水体中的杂质结合形成更大的絮凝体。絮凝体具有强大吸附力,不仅能吸附悬浮物,还能吸附部分细菌和溶解性物质。絮凝体通过吸附,体积增大而下沉。

混凝沉淀工艺在水处理上的应用已有几百年的历史,与其他物理化学方法相比具有出水水质好、工艺运行稳定可靠、经济实用、操作简便等优点。

原理:在混凝剂的作用下,使废水中的胶体和细微悬浮物凝聚成絮凝体,然后予以分离除去的水处理法。混凝沉淀法在水处理中的应用是非常广泛的,它既可以降低原水的浊度、色度等水质的感观指标,又可以去除多种有毒有害污染物。

气浮: 气浮机是溶气系统在水中产生大量的微细气泡, 使空气以高度分散的微小气泡形式附着在悬浮物颗粒上, 造成密度小于水的状态, 利用浮力原理使其

浮在水面,从而实现固-液分离的水处理设备。

药剂:需要投加的药剂有盐酸、硫酸亚铁、过氧化氢、片碱、PAC、PAM等。

3、达标可行性分析

(1) 采用工艺分析

项目生产废水采用"芬顿氧化+混凝沉淀+气浮"工艺进行废水的处理,对照《排污许可证申请和核发技术规范 铁路、船舶、航空航天和其他运输设备制造业》(HJ1124-2020)和《排污许可证申请与核发技术规范 家具制造工业》(HJ1027—2019)中推荐的污染防治可行技术,项目废水污染治理措施可行性分析可见表 8.2-2。

			可行技术			
产生环节	装置	污染因子	推荐的可行技术	技术规范名称	本项目采取 的废水防治 措施	是否符 合要求
喷漆水 帘机废 水、水喷 淋塔废 水	水帘机、喷淋塔	高浓度 COD、SS	预处理:除油、沉淀、过滤 生化处理:好氧、水解酸 化-好氧、厌氧-好氧、兼性 -好氧 深度处理:生物滤池、过滤、 混凝沉淀 (或澄清) 混凝、沉淀/气浮 、砂滤、 吸附	HJ 1027—2019	"芬顿氧化+ 混凝沉淀+ 气浮"	符合
批灰打 磨除尘 水帘机 废水	水帘机	低浓度 COD、SS、 氨氮	混凝、沉淀/气浮、砂滤、 吸附	НЈ1124-2020	气浮	
生活污水	化粪池	COD、氨氮	隔油+化粪池、其他生化处 理	HJ1124-2020	经化粪池/ 隔油池处理 后纳管排放	符合

表 8.2-2 废水污染防治可行技术情况表

综上,项目废水采取的治理工艺符合规范推荐的可行技术。

(2) 处理能力符合性

根据工程分析与水平衡可知,本项目建成后生产废水的产生量约为 11550t/a (38.5t/d),本项目废水处理站设计处理规模为 50m³/d,可满足项目废水处理水量的要求。

根据企业废水处理设计方案,废水处理站的进出水水质要求如下:

	项目	水量 (m³/d)	рН	CODcr(mg/L)	氨氮(mg/L)	SS (mg/L)
	帘机废水、水 废水进水要求	≤14	5-9	≤2000	≤35	≤1000
	磨除尘水帘机 <进水要求	≤6	6-10	≤500	≤35	≤1000
Н	水要求	≤20	6-9	≤500	≤35	≤400

表 8.2-3 污水处理站设计进、出水水质

根据前文工程分析可知,喷漆水帘机废水、水喷淋塔废水 COD 浓度为 914mg/L, 氨氮浓度 30mg/L, SS 浓度按 850mg/L; 批灰打磨除尘水帘机废水污 染物产生浓度为 CODCr 300mg/L、SS600mg/L、氨氮 20mg/L,可以满足废水处 理站的进水水质要求。

喷漆水帘机废水、水喷淋塔废水各主要工艺单元的处理效果(出水指标) 预测见下表:

序号	处理单元		COD(mg/L)	SS(mg/L)	氨氮(mg/L)
1	进	水	914	850	30
2	芬顿氧化	去除率	60%	10%	5%
2	分數氧化	出水	365.6	765	28.5
3	混凝沉淀	去除率	10%	80%	5%
3		出水	329.04	153	27.1
4	气浮	去除率	5%	10%	5%
4	一个子	出水	312.6	137.7	25.7
5	标准	出水	500	400	35
3	达标情况	出水	达标	达标	达标

表 8.2-4 喷漆水帘机废水、水喷淋塔废水主要处理单元及处理效果一览表

批灰打磨除尘水帘机废水各主要工艺单元的处理效果(出水指标)预测见下 表:

序号 处理单元 COD(mg/L) SS(mg/L)氨氮(mg/L) 进水 300 600 20 去除率 5% 60% 5% 气浮 出水 285 240 19

500

达标

400

达标

35

达标

表 8.2-5 批灰打磨除尘水帘机废水主要处理单元及处理效果一览表

1

2

3

标准

达标情况

由上表可知, 经预测, 项目喷漆水帘机废水、水喷淋塔废水、批灰打磨除尘

出水

出水

水帘机废水经污水处理站后的出水可达到《污水综合排放标准》(GB8978-1996)中三级标准。

8.2.2 地下水污染防治措施

1、防止地下水污染应遵循下列原则:

- (1)源头控制措施:主要包括在工艺、管道、设备、污水储存及处理构筑物采取相应的措施,以防止和降低可能污染物的跑、冒、滴、漏,将污染物泄漏的环境风险事故降低到最低程度;优化排水系统设计;管线铺设尽量采用"可视化"原则,即管道尽可能地上铺设,做到污染物"早发现、早处理",以减少由于埋地管道泄漏而可能造成的地下水污染。
- (2)分区防治措施:结合厂区建设项目各生产设备、管廊或管线、贮存与运输装置、污染物贮存与处理装置、事故应急装置等的布局,根据可能进入地下水环境的各种有毒有害物质的泄漏(含跑、冒、滴、漏)量及其他各类污染物的性质、产生量和排放量,划分污染防渗区,提出不同区域的地面防渗方案,给出具体的防渗材料及防渗标准要求,建立防渗设施的检漏系统;防渗分区一般分为重点污染防渗区、一般防渗区、简单防渗区。
- (3)污染监控体系:建立厂区地下水污染监控系统,包括建立完善的监测制度、配备先进的检测仪器和设备、科学、合理设置地下水污染监控井,及时发现污染、及时控制。
- (4)应急响应措施:制定地下水风险事故应急响应预案,明确风险事故状态下应采取的封闭、截流等措施,提出防止受污染的地下水扩散和对受污染的地下水进行治理的具体方案。

2、地下水污染防治措施

- (1) 源头控制措施
- 1)对工艺、管道、设备、事故应急池等构筑物等严格检查,有质量问题的及时更换,阀门采用优质产品,防止和降低"跑、冒、滴、漏"。
- 2) 所有生产中的储槽、容器均做防腐处理。禁止在厂区内任意设置排污水口,全封闭,防止流入环境中。
- 3)对工艺要求必须地下走管的管道、阀门设专用防渗管沟,管沟上设活动观察顶盖,以便出现渗漏问题及时观察、解决,管沟与污水集水井相连,并设计

合理的排水坡度, 便干废水排至集水井, 然后统一排入污水收集池。

- 4) 厂区内设置生活垃圾收集点和垃圾中转站,集中收集后的生活垃圾运至 城市规划的生活垃圾填埋场。生活垃圾运输基本实现收集容器化、运输密封化。 工业垃圾首先在企业内部进行无害化处理,再委托综合利用或运至规划建设的固 体废弃物填埋场作进一步处置。防止固废因淋溶对地下水造成的二次污染。
- 5)为了防止突发事故,污染物外泄,造成对环境的污染,厂区应设置专门的事故应急池及安全事故报警系统,一旦有事故发生,被污染的消防水、冲洗水等直接流入事故应急池,等待处理,以防止污染物外泄。

(2) 分区防渗

为防止物料、废物等跑、冒、滴、漏以及产生渗漏水污染地下水,本项目对生产车间地坪全部进行防渗处理,可有效防治污染物渗入地下,并及时地将渗漏的污染物收集并进行集中处理。本项目将加强井场防渗等级,避免污染物入渗,采取了分区防渗措施。参照《环境影响评价技术导则地下水环境》(HJ610-2016),将工程各功能单元可能产生污染的地区,划分为重点防渗区、一般防渗区和简单防渗区。

根据《环境影响评价技术导则——地下水环境》(HJ610-2016)地下水污染 防渗分区参照表进行分区防渗,具体见表 8.2-6。

防渗分 区	天然包气带 防污性能	污染控制 难易程度	污染物类型	防渗技术要求
重点防渗区	弱	难		等效黏土防渗层
	中-强	难	重金属、持久性有机物	Mb≥6.0m, K≤1×10 ⁻⁷
	弱	易	污染物	cm/s; 或参照 GB18598
				执行
一般防渗区	弱	易-难	其他类型	等效黏土防渗层
	中-强	难		Mb≥1.5m, K≤1×10 ⁻⁷
	中	易	重金属、持久性有机物	cm/s; 或参照 GB16889
	强	易	污染物	执行
简单防 渗区	中-强	易	其他类型	一般地面硬化

表 8.2-6 地下水污染防渗分区参照表

根据前文影响分析,本项目地块天然包气带防污性能为中,按照污染分区原则,确定全厂污染防治分区情况详见表 8.2-7。

表 8.2-7 厂区污染防治分区情况表

名称	范围
一般防渗区	1#厂房、2#厂房、危废仓库、污水处理区
简单防渗区	综合楼
非污染防治区	门卫、厂区道路

一般污染防渗区:是指裸露于地面的生产功能单元,污染地下水环境的物料泄漏后,容易被及时发现和处理的区域。主要包括 1#厂房、2#厂房、危废仓库、污水处理区等。一般污染区防渗要求:操作条件下的单位面积渗透量不大于厚度为 1.5m,渗透系数≤10⁻⁷cm/s 防渗层的渗透量,防渗能力与《危险废物贮存污染控制标准》(18597—2023)第 6.2.1 条等效。建议一般污染防渗区采取粘土铺底,再在上层铺 10~15cm 的水泥进行硬化。通过上述措施可使一般污染区各单元防渗层渗透系数≤10⁻⁷cm/s。

简单防渗区:指不会对地下水环境造成污染的区域。主要包括综合楼。根据 防渗参照的标准和规范,结合目前施工过程中的可操作性和和技术水平,不同的 防渗区域采用在满足防渗标准要求前提下的防渗措施。

项目拟采取以下地下水污染防治措施:

- ①三级化粪池、污水站池体、各污水管道按建筑规范要求做好防渗、硬底化工程,渗透系数<10⁻⁷cm/s。同时定期检查三级化粪池、污水站池体、污水管道等的情况,若发现墙体或管道出现裂痕等问题,立即进行抢修。
- ②贮存危险废物的容器或设施按《危险废物贮存污染控制标准》(18597—2023)有关要求进行,不在露天堆放,且按《危险废物转移联单管理办法》做好记录、管理。危废仓库基础渗透系数<10⁻¹⁰cm/s。
- ③各生产车间、仓库库按建筑规范要求做好防渗、硬底化工程,渗透系数 <10⁻⁷cm/s。定期检查车间地面的情况,若出现裂痕等问题,立即进行抢修。
 - ④厂区道路做好硬底化防渗措施。

在采取以上分区防渗处理后,本项目运营期产生的固体废物和原辅材料不会对地下水水质产生不良的影响。

项目厂区分区污染防治详见图 8.2.2。

3、应急响应

按"雨污分流、清污分流"的要求规划建设项目区排水系统,当生产车间废水发生泄漏或者厂区废水站发生事故时,应立即停止生产,防止污水的持续泄漏,

将事故废水收集至厂内事故应急池,事故应急池按照规定要求进行防渗处理。可 防止事故废水渗入地下,防止造成地下水的污染。

综上所述,本项目对可能产生地下水影响的各种途径均进行有效预防,在确保各项防渗措施得以落实,并加强维护和厂区环境管理的前提下,可有效控制厂区内的废水污染物下渗现象,本项目不会对区域地下水环境产生明显影响。

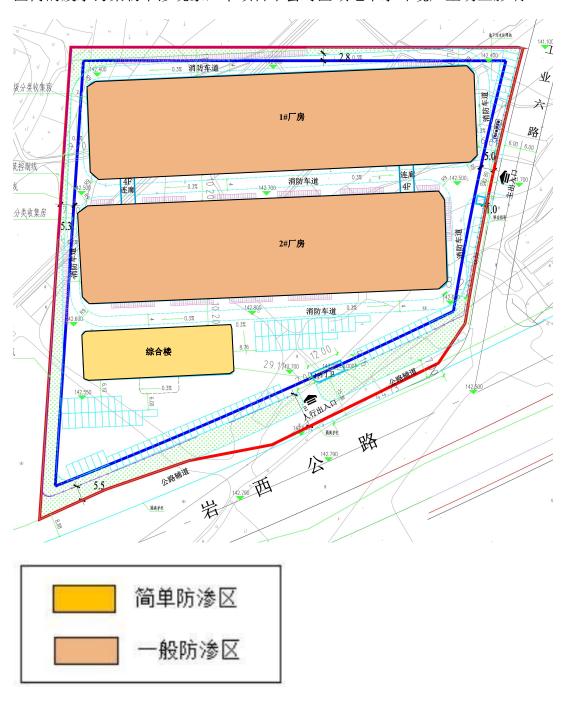


图 8.2.2 厂区污染防治分区图

8.2.3 营运期大气污染防治措施

根据项目工艺分析,项目营运过程中产生的废气主要为上漆和胶粘剂使用产生的有机废气,工艺粉尘,以及原材料板材存储散发的少量甲醛。

1、废气收集

废气收集管道要求采用不锈钢材质,管道连接采用焊接。收集参照《排风罩的分类和技术条件》(GB/T16758)、《局部排风设施控制风速检测与评估技术规范》(AQ/T 4274)等技术文件,常见收集方式与要求如下:

序号	收集方式	控制要求
1	密闭设备	设备全密闭、无泄漏
	密闭空间/全密	与车间外大气联通的开口断面控制风速≥1.2m/s,其他开口断面
2	留例空间/空留 闭集气罩	控制风速≥0.4m/s
	闪朱(早	因工艺要求需保持正压的,应在外层设置双层密闭收集
3	半密闭罩(含排	有外部气流干扰的(如放在室外)开口断面控制风速≥1.2m/s,
3	风柜)	无外部气流干扰的开口断面控制风速≥0.4m/s
4	接受式集气罩	罩口断面风速大于 0.5 m/s, 且大于 VOCs 的散逸速度
5	外部集气罩	距集气罩开口面最远处的 VOCs 无组织排放位置,控制风速不低
3		于 0.3 米/秒 (行业相关规范有具体规定的,按相关规定执行)

表 8.2-8 废气收集方式及要求

密闭罩:将尘源或整个工艺设备完全密闭起来,气体扩散被限制在一个很小的密闭空间内。它仅需较小的排气量,就可以有效防止粉尘或其他有害物质进入室内,同时也减小了除尘器的风量、降低了投资,其收集效率可达到100%。

半密闭罩: 半密闭罩上开有较大的孔,以方便工艺操作。它通过孔口处的吸入气流来控制有害物外逸。该罩由于增加了罩外的空气吸入量,所以其排气量比密闭罩大,但比其他形式的集气罩小,其收集效率可达到 80%以上。

外部罩: 是在受到工艺条件限制,无法对含尘气体发生源设备进行密闭时采用的。它设置在发生源附近,依靠罩外吸气流运动,将有害物质全部吸入罩内。有时根据工艺的特点,又可分为顶吸罩和侧吸罩,其收集效率根据设计条件不同可达到 60%~90%之间。

根据项目工艺特点,对于能密闭的设备尽量密闭集气,对于无法实施密闭集气的设备应优化集气设计。

2、废气治理

本项目拟采取的废气、处理收集措施如下:

表 8.2-9 废气收集、处理措施汇总

<i>t</i>) m		7-3F 41	
位置	废气污染源	污染物	采取废气收集措施
1#厂房	油性漆涂装	颗粒物、 苯系物、 乙酸酯 类、非甲 烷总烃、 TVOC	1#厂房油性漆调漆、喷漆和晾干均在密闭的房间内进行,除必要进出口外无其他开口,运行时处于密闭状态,运行空间保持微负压状态,通过送风机和抽风机进行换气,各喷漆房均配置有1个水帘喷漆台去除漆雾后,喷漆废气汇同调漆、晾干废气一起收集最终进入一套"干式过滤棉+活性炭吸附+活性炭脱附催化燃烧"(TA001)处理后由不低于15m(DA001)高排气筒排放。
	水性漆涂装	颗粒物、 非甲烷 总烃	1#厂房水性漆调漆、喷漆、晾干均在密闭的房间内进行,除必要进出口外无其他开口,运行时处于密闭状态,运行空间保持微负压状态,通过送风机和抽风机进行换气。喷漆废气、调漆、晾干废气一起收集最终进入两套"水帘机"(TA002、TA003)处理后由不低于15m(DA002、DA003)高排气筒排放。
	辊涂/淋涂	非甲烷 总烃	1#厂房辊涂机、淋涂机采用封闭式结构,除必要进出口外无其他开口,在辊涂机、淋涂机出口处设置集气罩,有机废气收集后最终进入一套"水喷淋塔"(TA004)处理后由不低于 15m(DA004)高排气筒排放。
	油性漆涂装	颗粒物、 苯系物、 乙酸酯 类、非甲 烷总烃、 TVOC	2#厂房油性漆调漆、喷漆和晾干均在密闭的房间内进行,除必要进出口外无其他开口,运行时处于密闭状态,运行空间保持微负压状态,通过送风机和抽风机进行换气,各喷漆房均配置有1个水帘喷漆台去除漆雾后,喷漆废气汇同调漆、晾干废气一起收集最终进入一套"干式过滤棉+活性炭吸附+活性炭脱附催化燃烧"(TA005)处理后由不低于15m(DA005)高排气筒排放
2#厂房	水性漆涂装	颗粒物、 非甲烷 总烃	2#厂房水性漆调漆、喷漆、晾干均在密闭的房间内进行,除必要进出口外无其他开口,运行时处于密闭状态,运行空间保持微负压状态,通过送风机和抽风机进行换气。喷漆废气、调漆、晾干废气一起收集最终进入两套"水帘机"(TA006、TA007)处理后由不低于15m(DA006、DA007)高排气筒排放。
	辊涂/淋涂	非甲烷 总烃、乙 酸酯类	2#厂房辊涂机、淋涂机采用封闭式结构,除必要进出口外无其他开口,在辊涂机、淋涂机出口处设置集气罩,有机废气收集后最终进入一套"水喷淋塔"(TA008)处理后由不低于15m(DA008)高排气筒排放。
1#厂房	木工粉尘	颗粒物	本项目1#厂房拟设置2套治理设施处理尾气由2根排气筒排放,即木工粉尘收集后经中央布袋除尘器(TA009、TA010)处理后经不低于15m排气筒

			(DA009、DA010) 高空排放
			本项目2#厂房拟设置2套治理设施处理尾气由2根排
2#广户	 木工粉尘	 颗粒物	气筒排放,即木工粉尘收集后经中央布袋除尘器
2#厂房	水土切主 	秋松初 	(TA011、TA012) 处理后经不低于 15m 排气筒
			(DA011、DA012)高空排放
			本项目1#厂房拟设置2套治理设施处理尾气由2根排
			气筒排放,即人工批灰、打磨由引风机收集后经水滤
1#厂房	批灰、打磨 粉尘	颗粒物	式除尘柜(TA013)处理后经不低于 15m 排气筒
1#) //3			(DA013) 高空排放;机器打磨由吸风管道收集后经
			布袋除尘器(TA014)处理后经不低于 15m 排气筒
			(DA014)高空排放
		颗粒物	本项目2#厂房拟设置2套治理设施处理尾气由2根排
	批灰、打磨		气筒排放,即人工批灰、打磨由引风机收集后经水滤
2#厂房			式除尘柜(TA015)处理后经不低于 15m 排气筒
2#) //3	粉尘		(DA015) 高空排放;机器打磨由吸风管道收集后经
			布袋除尘器(TA016)处理后经不低于 15m 排气筒
			(DA016)高空排放
1#厂房原	外购板材存	甲醛	加强仓库通风换气
料车间	储废气	门门井	加压 E/十咫/气穴 (

3、废气污染防治措施原理分析

(1) 水帘机

水帘机是利用水来捕捉漆雾的一种设备。它一般由排风装置、供水装置、捕集漆雾水帘和喷淋装置、气水分离装置、风道等构成。

水帘机处理漆雾的基本过程是:在排风机引力的作用下,含有漆雾的空气向水帘机的内壁水帘板方向流动,一部分漆雾直接接触到水帘板上的水膜而被吸附,一部分漆雾在经过水帘板上淌下的水帘时被水帘冲刷掉,其余未被水膜和水帘捕捉到的残余漆雾在通过水洗区和清洗区时被清洗掉。

水帘机的性能主要取决于水泵和排风机的配套性及漆雾与水的混合接触情况。因此,水流的变化、水量的选择、空气与水的混合接触情况是直接影响到对漆雾捕集的主要因素。

(2) 水喷淋塔

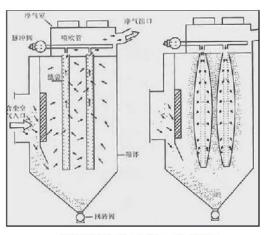
又名洗涤塔,水洗塔,是气液发生装置。废气与液体充分接触,利用有机废气在水中的溶解度来降低其浓度,从而达到废气治理的目的。

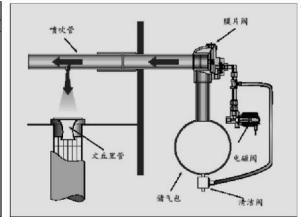
(2) 活性炭吸附+活性炭脱附催化燃烧

有机废气进入活性炭吸附单元进行吸附,经净化后的空气排入大气。吸附单元吸附饱和后,利用催化分解室的热量,通过高温风机,将热能送入饱和的吸附

单元进行脱附,脱附后的浓缩有机废气通过管道回到催化分解室分解燃烧,燃烧后产生的热能继续去脱附,循环使用,同时降低催化分解加热时所需的电能。

本装置的工作原理是利用微孔活性物质对溶剂分子或分子团的吸附力,当废气通过吸附介质时,其中的有机溶剂即被阻留下来,从而使有机废气得到净化处理,又根据分子热运动理论,从外界加给吸附体系热能,提高被吸附分子或分子团的热运动能量,当分子热动力足以克服吸附力时,有机溶剂分子便从吸附体系中争脱出来,从而使吸附介质得到再生,同时有机废气得到浓缩。当有机废气的浓度达到 2000ppm 以上时,催化床内可维持自然,不用外加热。燃烧后的尾气一部分排往大气,一部分送往吸附床,用于活性炭的脱附再生。这样可以满足燃烧和脱附所需热能,大大节省能耗,它既适合于连续工作,也适合于间断情况下使用。当某个吸附箱吸附饱和需要脱附再生时,由 PLC 程序自动切换到脱附工作状态。脱附结束,该吸附箱重新回到吸附工作状态,这样,可以保证由于生产需要的连续性。


采用颗粒活性炭作为吸附剂时,其碘值不宜低于800mg/g;采用蜂窝活性炭作为吸附剂时,其碘值不宜低于650mg/g;采用活性炭纤维作为吸附剂时,其比表面积不低于1100m²/g(BET法)。


- B. 蜂窝活性碳比表面积大, 吸附能力强。
- C. 蜂窝活性碳流体阻力小, 再生效果好。

(3) 中央布袋除尘器

中央布袋除尘器是一种干式滤尘装置。它适用于捕集细小、干燥、非纤维性 粉尘。滤袋采用纺织的滤布或非纺织的毡制成,利用纤维织物的过滤作用对含尘 气体进行过滤,当含尘气体进入袋式除尘器后,颗粒大、比重大的粉尘,由于重 力的作用沉降下来,落入灰斗,含有较细小粉尘的气体在通过滤料时,粉尘被阻 留,使气体得到净化。

工作原理:过滤式除尘器是指含尘烟气孔通过过滤层时,气流中的尘粒被滤层阻截捕集下来,从而实现气固分离的设备。过滤材料捕集粗粒粉尘主要靠惯性碰撞作用,捕集细粒粉尘主要靠扩散和筛分作用,滤料的粉尘层也有一定的过滤作用。袋式除尘器本体结构主要由上部箱体、中部箱体、下部箱体(灰斗)、清灰系统和排灰机构等部分组成。具体的组成见图 7.2.3。

过滤状态除尘器工作原理

清灰状态脉冲清灰工作情况

图 8.2.3 布袋除尘原理示意图

4、措施可行性论证分析

(1) 除尘器

除尘器可分为两大类:

干式除尘器:包括重力沉降室、惯性除尘器、电除尘器、布袋除尘器、旋风除尘器。

湿式除尘器:包括喷淋塔、冲击式除尘器、文丘里洗涤剂、泡沫除尘器和水 膜除尘器等。

目前常见的运用最多的是旋风分离器、静电除尘器、重力沉降室与布袋除尘器。对于以上几种常用除尘器的优缺点见表 8.2-10。

名称 优点 缺点 工作原理 (1) 卸灰阀如果漏损会严 (1) 内部没有运动部件, 含尘气体从入口导入 重影响除尘效率; 维护方便;制作管理十分 除尘器的外壳和排气 (2) 磨损严重,特别是处 方便; 管之间,形成旋转向 理高浓度或磨损性大的粉 (2) 体积小、结构简单, 下的外旋流。悬浮于 尘时,入口处和椎体部位都 价格便宜; 外旋流的粉尘在离心 容易磨坏: 旋风分 (3) 可耐 400 摄氏度高 (3) 除尘效率低,单独使 力的作用下移向器 离器 壁,并随外旋流转到 用时有时满足不了含尘气 (4)设耐磨内衬后,可用 除尘器下部, 由排尘 体排放浓度要求; 以净化含高磨蚀性粉尘的 孔排出。净化后的气 (4) 由于除尘效率随筒体 烟气; 体形成上升的内旋流 直径增加而降低,因而单个 (5) 可以干法清灰,有利 并经过排气管排出。 除尘器的处理风量受到一 于回收有价值的粉尘。 定的限制。 静电除 含有粉尘颗粒的气 (1)净化效率高,可以达到 (1) 设备比较复杂,要求设

表 8.2-10 常用除尘器优缺点对照表

尘器	体电电极压阴气带在向中则荷力极放粒上体,源晕板电极体负电阳与使电的运出则,精度极级接形时晕,体作,粒以粒,带积到的压(地成,放此离用在相负在亦极,放此离用在相负在亦极,形识得的动物,故此离用在相负在亦极,极的于净路、 一、 一、 ,,,,,,,为阳,尘板气流称阳高于、,,,,,,为阳,尘板气	95%以上,能够铺集 0.01 微米以上的细粒粉尘。 (2) 阻力损失小,一般在 20毫米水柱以下。 (3) 允许操作温度高。 (4) 处理气体范围量大。 (5) 运行成本低,可以完全 实现操作自动控制。	备调运和安装以及维护管理水平高。 (2) 对粉尘比电阻有一定要求,所以对粉尘有一定的选择性,不能使所有粉尘都的获得很高的净化效率。 (3) 受气体温、湿度等的操作条件影响较大; (4) 一次投资较大,卧式的电除尘器占地面积较大。
布袋除尘器	利用纤维织物(滤料)的过滤作用对含尘气体进行过滤,当含尘气体进入袋式除尘气气体进入袋式、比重力的的物尘,由于重力的作用沉降下来,落有较细小粉尘的气体在通过滤料时,粉尘被阻留,使气体得到净化。	(1)除尘效率不受烟气成分、含尘质量浓度、颗粒分散度及粉尘比电阻等粉尘性质的影响。 (2)除尘效率高,可以达到95%以上,结构简单、维护方便等。 (3)性能稳定,处理风量、气体含尘量、温度等工作条件的变化,对袋式除尘器的除尘效果影响不大。	(1) 运行阻力大,运行成本较静电除尘器高。 (2) 有的烟气含水比较多,或者所携粉尘有较强的吸湿性,往往导致滤袋黏结、堵塞滤料。 (3) 受烟气温度条件限制大。根据烟气的温度不同选用不同的材质,包括常温、低温、中温和高温材质;
重力沉降室	利用重力作用使尘粒 从气流中自然沉降, 适用于捕集密度较 大、颗粒粗的粉尘	具有结构简单、造价低、 施工容易、维护管理方便、 阻力小等优点	除尘效率低,占地面积大, 故一般用于系统中的第一 级。
水膜除尘器	含尘气体由筒体下部 顺切向引入,旋转上 升,尘粒受离心力作 用而被分离,抛向筒 体内壁,被筒体内壁流动的水膜层所吸附,随水流到底部锥体,经排尘口卸出。 水膜层的形成是由布置在筒体的上部几个	结构简单,金属耗量小, 耗水量小	高度较大,布置困难,并且 在实际运行中发现有带水 现象。

喷嘴、将水顺切向喷	
至器壁。这样,在筒	
体内壁始终覆盖一层	
旋转向下流动的很薄	
水膜,达到提高除尘	
效果的	
目的。	

项目木工粉尘采用中央布袋除尘器,布袋除尘效率可达到 90%以上。布袋除尘器总造价约在 10 万元左右,在建设单位可承受范围内,可有效降低对大气环境的影响,产生较好的环境效益,因此,本项目木工粉尘除尘治理措施在经济上是可行的。

对于批灰、打磨粉尘,单台水滤式除尘柜设置 21 台水帘机进行除尘,根据调查同行业批灰、打磨粉尘监测数据,批灰、打磨粉尘排放浓度为<30mg/m³,能满足《工业涂装工序大气污染物排放标准》(DB33/2146-2018)中新建污染源排放限值(30mg/m³),且水帘机造价低,在建设单位可承受范围内,可有效降低对大气环境的影响,产生较好的环境效益,因此,本项目批灰、打磨粉尘除尘治理措施在经济和治理效果上是可行的。

(2) 有机废气处理设施

目前,市场上应用较多,技术成熟的有机废气净化方法主要有直接燃烧法、催化燃烧法、活性炭吸附法、吸收法、冷凝法、低温等离子法、光催化氧化法等,各方法的主要优缺点见表 8.2-11。

方法	原理	优点	缺点	适用范围
		可处理含有低浓度	活性炭的再生和补	适用温度较
吸附	分子扩散到固体吸附剂	的碳氢化合物和低	充需要花费的费用	低、浓度低
法	表面,有害成分被吸附	温气体;溶剂可回	多;在处理喷漆室	废气、废气
法	而达到净化	收,进行有效利用;	废气时要预先除漆	量较小时的
		处理程度可以控制	雾	废气治理
			处理温度高, 需燃	
	 废气引入燃烧室与火焰	燃烧效率高,管理容	料费高;燃烧装置、	 适用于有机
直接	直接接触,使有害物燃	易; 仅烧嘴需要经常	燃烧室、热回收装	溶剂含量
燃烧	烃	维护,维护简单;装	置等设备造价高;	高、湿度高
法	炭 炭 炭 炭 炭 炭 炭 炭 炭 炭 炭 炭 炭 炭 炭 炭 炭 炭 炭	置占地面积小;不稳	处理像喷漆室浓度	的废气治理
	/X (11) 化	定因素少,可靠性高	低、风量大的废气	
			不经济	
催化	在催化剂作用下,是有	与直接燃烧相比,能	催化剂价格高,需	适用于废气

表 8.2-11 有机废气主要净化方法比较

燃烧法	机废气在引燃点温度以下燃烧生成 CO ₂ 和 H ₂ O,而被净化	在低温下养化分解, 燃料费可省 1/2; 装 置占地面积小; NO _X 生成少	考虑催化剂中毒和 催化剂寿命;必须 进行前处理除去尘 埃、漆雾等;	温度高、流量小、有机溶剂浓度高、含杂质少的场合
吸收法	液体作为吸收剂,使废 气中有害气体被吸收溶 剂所吸收从而达到净化	设备费用低,运转费 用少;无爆炸、火灾 等危险,安全性高, 适宜处理喷漆室和 挥发室排出废气	需要对产生废水进 行二次处理,对涂 料品种有限制	适用于高、 低浓度有机 废气
冷凝法	降低有害气体的温度, 能使某些成分冷凝成液 体的原理	设备、操作条件简单,回收物质纯度高	净化效率低	适用于组分 单一的高浓 度有机废气
光催 化氧 化法 (UV 光解)	用半导体为催化剂,通过光激发引起氧化一还原反应,将有机物废气污染物氧化成 CO ₂ 和H ₂ O,而被净化	处理效率高、适应性 强、占地面积小、运 行成本低、不产生二 次污染	催化剂价格高,需 考虑催化剂中毒和 催化剂寿命;必须 进行前处理除去尘 埃、漆雾等;	适用于高、 低浓度有机 废气
低温 等离 子法	在外加电场的作用下, 介质放电产生携能电子 轰击污染物分子,使其 电离、解离和激发,然 后引发了一系列复杂的 理化反应,使复杂大分 子污染物转变为简单小 分子安全物质,从而使 污染物得以降解去除。	自动化程度高、工艺 简洁、操作简单方 便、净化效率高、无 二次污染等	易产生电火花,存 在一定的安全隐患	适用于高、 低浓度有机 废气

本项目油性漆涂装产生的有机废气采用"活性炭吸附+活性炭脱附催化燃烧"进行处理,根据有机废气治理设施市场造价分析,有机废气治理设施总造价约在80万元左右,在建设单位可承受范围内,可有效降低对大气环境的影响,产生较好的环境效益,因此,本项目有机废气治理措施在经济上是可行的。

另外,根据《浙江省分散吸附-集中再生活性炭法挥发性有机物治理体系建设技术指南》附录 A,风机风量为 10000~20000m³/h,VOCs 初始浓度范围在 0~200mg/m³,活性炭最少装填量/吨(按 500 小时使用时间计)为 1.5 吨,本项目 1#厂房和 2#厂房油性漆喷漆各配置 20000m³/h 的风机风量,活性炭填充量约 4.5m³/套(2.5t/套),因此,本项目油性漆涂装配置的风机风量与活性炭填装量相匹配。

(3) 治理措施可行性分析

根据《浙江省工业涂装工序挥发性有机物污染防治可行技术指南》、《排污

许可证申请和核发技术规范 铁路、船舶、航空航天和其他运输设备制造业》 (HJ1124-2020) 和《排污许可证申请与核发技术规范 家具制造工业》 (HJ1027—2019) 中推荐的污染防治可行技术,本项目可行性分析见下表 7.2-9。

 序号	 污染源	规范推荐可 是否为可行技		是否为可行技	判断依据
17, 9	1774/5	11/4工乙	行技术	术	ナリ以口(1 /14 1/14
		水帘机+干式过滤			
1	油性漆喷涂	棉+活性炭吸附+	浓缩+燃烧/	是	НЈ 1027—2019
1	一	活性炭脱附催化	催化氧化	L.	113 1027—2019
		燃烧			
					浙江省工业涂装工序挥
2	水性漆喷涂	水帘机	喷淋吸收	是	发性有机物污染防治可
					行技术指南
					浙江省工业涂装工序挥
3	辊涂、淋涂	水喷淋塔	喷淋吸收	是	发性有机物污染防治可
					行技术指南
			中央除尘、袋		
4	木工粉尘	中央布袋除尘器	式除尘	是	НЈ 1027—2019
5	批灰、打磨粉	水滤除尘器、布袋	袋式除尘、湿	是	HJ1124-2020
	尘	除尘器	式除尘	上	1131124-2020

表 8.2-12 污染防治技术可行性分析一览表

由上表可知,项目颗粒物、有机废气等采用规范推荐的可行技术,本项目废气处理设施可行。

8.2.4 营运期噪声污染防治措施

本项目噪声防治措施主要包括如下方面:

1、车间平面布置

- ①合理布置车间内的生产设备,将高噪声设备布置在车间的中央,周围设置低噪声设备,避免将其布置在靠近边界的位置。各车间生产时尽量关闭门窗。
- ②在主要产生噪声的车间、厂房的顶部和四周墙面上装饰吸声材料,如多孔材料、柔性材料、膜状与板状材料;也可在空间悬挂适当的吸声体,以吸收厂房内的一部分反射声。

2、设备噪声控制

- ①设备采购。在设计和设备采购阶段,充分选用先进的低噪设备,如选用低噪的风机、泵等,以从声源上降低设备本身噪声。
 - ②设备安装。在设备安装过程中,对风机、泵等高噪声设备须采取相应的减

震、隔声措施,如采用固定或密封式隔声罩以及局部隔声罩,将其噪声影响控制 在较小范围内。对风机配置的电动机座安装弹性衬垫和保护套;风机安装隔声罩, 在风机进、出口安装消声器。

③设备保养。平时生产中需加强对各设备的维修、保养,对其主要磨损部位要及时加添润滑油,确保设备处于良好的运转状态,杜绝因设备不正常运转而产生的高噪声现象。

3、其它

加强厂区绿化,既可以美化环境,也可以起到一定的降低噪声作用。

8.2.5 营运期固废污染防治措施

本项目营运期间产生的固体废物主要为边角料、木质粉尘,漆渣,废包装桶,废砂纸,收集的打磨、批灰粉尘,废包装材料,污泥,废活性炭,废过滤棉,废催化剂,废布袋,职工生活垃圾。

1、源头减量措施

建设单位应不断提高工艺水平,提高原辅材料的利用率,精简产品包装,减少废包装物、边角料等固废的产生;最大限度做到固废源头减量和资源化利用。

2、一般固废污染防治措施

在厂区南侧设1个一般固废堆场,面积约为50m²,用于暂存一般固废,按《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)相关要求建设。边角料、木质粉尘、废砂纸、废包装材料、废布袋收集后出售综合利用;生活垃圾分类收集后委托环卫部门统一清运处置。

3、危险废物污染防治措施

本项目危险废物为漆渣、废包装桶、收集的打磨、批灰粉尘、污泥、废活性 炭及废催化剂,危险废物经收集后妥善贮存,最终委托专业资质单位处置。危废 仓库位于厂区北侧,面积约72m²。

(1) 危险废物堆场设计原则

危废堆场需采取以下措施:

- ①危废堆场内采取粘土铺底,再在上层铺设 10~15cm 的水泥进行硬化,并铺环氧树脂防渗,防渗层渗透系数<10⁻⁷cm/s:
 - ②配备安全照明设施和观察窗口;

- ③另外堆场需符合"防风、防雨、防晒、防渗漏"等要求;
- ④堆场周边应设置径流疏导系统收集雨水、渗滤液等:
- ⑤危险废物贮存容器上必须粘贴相应危险废物标志。危险废物贮存设施都必须按环境保护图形标志《固体废物贮存(处置)场》(GB15562.2-1995)(修改单)的规定设置警示标志。
 - (2) 存储过程防治措施
- ①严格按贮存要求设计。应严格按照《建筑设计防火规范》(GB50016-2006)等标准规范执行。贮存容器要与危险废物相容,可选用不锈钢、铝或者塑料容器。
 - ②堆放场所应防风、防雨、防晒, 地面应防渗、防腐。
- ③危险废物贮存容器上必须粘贴相应危险废物标志。危险废物贮存设施都必须按环境保护图形标志《危险废物识别标志设置技术规范》(HJ1276-2022)、《环境保护图形标志—固体废物储存(处置)场》(GB15562.2)的规定设置警示标志。
- ④如实记载每批危险废物名称、来源、数量、特性和包装容器的类别、入库 日期、存放库位、废物出库日期及接收单位名称。该记录在危险废物转运后应继 续保留三年。出入库必须检查验收登记。
- ⑤必须定期对所贮存的危险废物包装容器及贮存设施进行检查,发现破损,应及时采取措施清理更换。
- ⑥建设单位严格落实《危险废物贮存污染控制标准》(18597—2023)中的相关要求,贮存易产生粉尘、VOCs、酸雾、有毒有害大气污染物和刺激性气味气体的危险废物贮存库,应设置气体收集装置和气体净化设施;气体净化设施的排气筒高度应符合 GB 16297 要求。
- ⑦贮存库内不同贮存分区之间应采取隔离措施。隔离措施可根据危险废物特性采用过道、隔板或隔墙等方式。
- ⑧在贮存库内或通过贮存分区方式贮存液态危险废物的,应具有液体泄漏堵截设施,堵截设施最小容积不应低于对应贮存区域最大液态废物容器容积或液态废物总储量 1/10(二者取较大者);用于贮存可能产生渗滤液的危险废物的贮存库或贮存分区应设计渗滤液收集设施,收集设施容积应满足渗滤液的收集要求。

表 8.2-13 建设项目危险废物贮存场所(设施)基本情况

序号	贮存场 所(设 施)名称	危险废物 名称	危险废 物类别	危险 废物 代码	位置	占地面积	贮存方式	贮存 能力	贮存 周期																						
1		漆渣	HW12	900-2			包装桶储																								
				52-12			存																								
2		废包装桶	HW49	900-0			直接贮存																								
		11. 10. 11. 1.		41-49																											
		收集的打		900-2			包装桶储																								
3		磨、批灰	HW12	HW12	HW12	HW12	HW12	HW12	HW12	HW12	HW12	HW12	HW12	HW12	HW12	HW12	HW12 	HW12	52-12	广区		存									
	危废仓	粉尘			南侧																										
4	库	污泥	HW12	900-2	危废	72m ²	包装桶储	30t	4 个月																						
) 	1770	11 ((12	52-12	仓库		存																								
5		 废活性炭	HW49	900-0	٠, ١		袋装储存																								
)		及百年灰	ПW49	39-49			衣衣阳竹																								
		成法集拍	1111/12	900-2			代壮州方																								
6		废过滤棉	HW12	52-12			袋装储存																								
7		床 供 小 >=	1111/20	772-0			A: 1+ 1+ 1+																								
7		废催化剂	HW50	07-50			袋装储存																								

(3) 运输过程污染防治措施

①危险废物的运输转移应按《道路危险货物运输管理规定》的规定执行:专用车辆技术性能符合国家标准《营运车辆综合性能要求和检验方法》(GB18565)的要求;技术等级达到行业标准《营运车辆技术等级划分和评定要求》(JT/T198)规定的一级技术等级;配备与运输的危险货物性质相适应的安全防护、环境保护和消防设施设备等。

②危险废物的运输转移过程控制应按《危险废物转移联单管理办法》的规定 执行:危险废物产生单位在转移危险废物前,须按照国家有关规定报批危险废物 转移计划;经批准后,产生单位应当向移出地环境保护行政主管部门申请领取联 单;危险废物产生单位每转移一车、船(次)同类危险废物,应当填写一份联单; 每车、船(次)有多类危险废物的,应当按每一类危险废物填写一份联单;接受 单位应当将联单第一联、第二联副联自接受危险废物之日起十日内交付产生单 位,联单第一联由产生单位自留存档,联单第二联副联由产生单位在二日内报送 移出地环境保护行政主管部门;接受单位将联单第三联交付运输单位存档;将联 单第四联自留存档;将联单第五联自接受危险废物之日起二日内报送接受地环境 保护行政主管部门。

③ 危险废物转运前应检查危险废物转移联单,核对品名、数量和标志等。

- ④危险废物转运前应检查转运设备和盛装容器的稳定性、严密性,确保运输途中不会破裂、倾倒和溢流。
 - ⑤危险废物在转运过程中应设专人看护。
- ⑥严禁运输车辆经过自然保护区、风景名胜区、饮用水水源保护区、人口密 集的居住区。

(4) 处置过程污染防治措施

项目危险废物漆渣、废包装桶、收集的打磨、批灰粉尘、污泥、废活性炭及 废催化剂等委托有资质的单位处置;废包装桶也可由原生产厂家直接回收重新用于原始用途。

综上所述,上述措施可满足项目固废处置要求,固废可做到妥善、安全处置。

8.2.6 土壤环境保护措施

根据项目所在地土壤现状调查可以看出,项目所在地及周边土壤基本因子均可以达到《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值限值要求,项目所在地土壤现状环境质量较好。

为了保护土壤环境,本次环评要求企业从源头控制、过程控制、跟踪监测三 方面做好以下土壤环境保护工作:

1、源头控制

本次项目应从源头控制跑冒滴漏,减少甚至杜绝跑冒滴漏,及时维修保养设备和相关阀门、法兰、管件等连接设备。

2、过程防控措施

生产区地面采用防腐防渗措施,具体已在地下水防控措施中列出,见 8.2.2 章节。

3、跟踪监测

本次环评制定了跟踪监测计划,本次环评要求企业每5年开展1次土壤监测, 并在监测前、后及时向社会公布信息。

8.2.7 污染防治对策与措施总汇

拟建项目污染治理措施见表 8.2-14。

表 8.2-14 污染治理措施一览表

时段	项目	环保措施
	废气	规范水泥拆包、混凝土搅拌的操作,粉性材料堆放在室内,减少粉尘影响。
	噪声	选用低噪声机械设备;禁止夜间进行产生噪声污染的施工,必要的夜间施工在施工前向当地环保部门申请审批,并公告周边居民及企业;加强施工管理。
施工期	废水	加强用水管理,节约用水;施工人员如厕可借用厂区厕所,生活污水经化粪池处理达标后纳入市政污水管网,进入污水处理厂统一处理。
	固废	生活垃圾集中、分类收集,由环卫部门统一清运,处置;对于建筑垃圾 应进行分拣,可以回收利用的部分应积极进行综合利用,不能利用的建筑垃 圾送至城管部门指定的地点堆放,严禁随意运输,随意倾倒。
	废水	①厂区按照"清污分流、雨污分流、污污分流"原则实施设计; ②喷漆水帘机废水、水喷淋塔废水、批灰打磨除尘水帘机废水分质分类 收集后纳入厂区内污水处理设施处理,厂区内污水处理设施处理规模为 50m³/d,采取"芬顿氧化+混凝沉淀+气浮"的处理工艺,经处理达到达到《污 水综合排放标准》(GB8978-1996)中三级标准(其中氨氮、总磷排放参照 《工业企业废水氮、磷污染物间接排放限值》(DB33/887-2013)中标准限 值)后纳入市政污水管网进入缙云县第三污水处理厂处理; ③生活废水经化粪池/隔油池处理后纳管排放。
	废气	(1) 有机废气:①1#厂房油性漆调漆、喷漆和晾干废气一起收集最终进入一套"干式过滤棉+活性炭吸附+活性炭脱附催化燃烧"(TA001)处理后由不低于15m(DA001)高排气筒排放。②1#厂房水性漆调漆、喷漆、晾干废气一起收集最终进入两套"水帘机"(TA002、TA003)处理后由不低于15m(DA002、DA003)高排气筒排放。③1#厂房辊涂机、淋涂机采用封闭式结构,除必要进出口外无其他开口,在辊涂机、淋涂机出口处设置集气罩,有机废气收集后最终进入一套"水喷淋塔"(TA004)处理后由不低于15m(DA004)高排气筒排放。④2#厂房油性漆调漆、喷漆和晾干废气一起收集最终进入一套"干式过滤棉+活性炭吸附+活性炭脱附催化燃烧"(TA005)处理后由不低于15m(DA005)高排气筒排放。⑥2#厂房水性漆调漆、喷漆、晾干废气一起收集最终进入两套"水帘机"(TA006、TA007)处理后由不低于15m(DA006、DA007)高排气筒排放。⑥2#厂房辊涂机、淋涂机采用封闭式结构,除必要进出口外无其他开口,在辊涂机、淋涂机出口处设置集气罩,有机废气收集后最终进入一套"水喷淋塔"(TA008)处理后由不低于15m(DA008)高排气筒排放。⑥2#厂房粮涂机、料涂机出口处设置集气罩,有机废气收集后最终进入一套"水喷淋塔"(TA008)处理后由不低于15m(DA008)高非气筒排放。②针对木工粉尘本项目2#厂房拟设置2套治理设施处理尾气由2根排气筒排放,即木工粉尘、少集后经中央布袋除尘器(TA011、TA012)处理后经不低于15m排气筒(DA011、DA012)高空排放。(3)批灰、打磨粉尘:①针对批灰、打磨粉尘本项目1#厂房拟设置2套治理设施处理尾气由2根排气筒排放,即人工批灰、打磨由引风机收集后经水滤式除尘柜(TA013)处理后经不低于15m排气筒(DA011、高空排放。机器打磨由吸风管道收集后经布袋除尘器(TA014)处理后经不低于15m排气筒(DA014)高空排放。《针对批灰、打磨粉尘本项目2#厂房拟设置2套治筒(DA014)高空排放。②针对批灰、打磨粉尘本项目2#厂房拟设置2套治筒(DA014)高空排放。②针对批灰、打磨粉尘本项目2#厂房拟设置2套治

	理设施处理尾气由2根排气筒排放,即人工批灰、打磨由引风机收集后经水
	滤式除尘柜(TA015)处理后经不低于 15m 排气筒(DA015)高空排放。机
	器打磨由吸风管道收集后经布袋除尘器(TA016)处理后经不低于 15m 排气
	筒(DA016)高空排放。
	(4) 食堂油烟经油烟净化器处理后楼顶排放。
噪声	合理布局; 合理选型, 选用低噪声设备; 对于高噪声设备设置减振基础
際戸	和安装消声器;加强管理,降低人为噪声;加强厂区绿化。
	边角料、木质粉尘、废砂纸、废包装材料、废布袋收集后出售综合利用;
	生活垃圾分类收集后委托环卫部门统一清运处置;漆渣、废包装桶、收集的
固废	打磨、批灰粉尘、污泥、废活性炭、废吸附棉及废催化剂等危险废物经收集
	后妥善贮存,最终委托专业资质单位处置。危废仓库位于厂区南侧,面积约
	$72m^2$.
	1#厂房、2#厂房、污水处理区、危废仓库等划分为一般防渗区;综合楼
地下	为简单防渗区;
水	按照"源头控制、末端防治、污染监控、应急响应"相结合的原则,从
	污染物的产生、入渗、扩散、应急响应全阶段进行控制。
- A11-CI	①围堰、防火堤、报警系统、消防器材等;②自动检测仪器、超限报警
风险	装置、可燃气体检测报警仪;③消防排水收集系统,包括收集池、管网、截
防范	断装置及排水监控系统; ④建立事故风险紧急监测系统, 特别是事故状况下
措施	应急措施;⑤应急池及其他,事故池容积 45m³。

8.3 环保投资

环保投资是实现各项环保措施的重要保证,为了使该项目的发展与环境保护相协调,企业应该在废水、废气、噪声、固废防治等环境保护工作上投入一定资金,以确保环境污染防治工程措施到位,使环保"三同时"工作得到落实,本项目的主要环保投资 560 万元,占项目总投资 16200 万元的 3.5%,见表 8.3-1。

投资 项目 内容及规模 环保效益 (万元) 污水处理设施、污水管网等 80 废水 达到纳管标准 10 中央布袋除尘器 100 水帘机 100 废气 废气污染物达标排放 "水帘机+干式过滤棉+活性炭吸附 200 +活性炭脱附催化燃烧" 噪声 设备隔声、降噪 10 降噪, 厂界噪声达标 一般固废贮存场所 储运各类固废, 以便废弃物资源 危险废物暂存场 固废 30 化、无害化 生活垃圾收集点 环境风险 应急物资、应急演练、应急池等 30 应急防护

表 8.3-1 三废治理投资估算

浙江家家智能家居有限公司年产6000套智能定制家居生产线项目环境影响报告书

ſ	A >1	7 60	,
ı	台计	560	/

9环境影响经济损益分析

环境经济损益分析就是要对建设项目环保设施的直接和间接投入与建设项目运行后环保投资产生的经济效益、环保效益、社会效益进行分析。然而,经济效益比较直观,而环境效益和社会效益则很难用货币直接计算。本评价对环境经济损益分析,采用定性的方法进行简要的分析。

9.1 经济效益分析

本项目总投资 16200 万元,项目达产后,可实现年产 6000 套智能家居的生产能力,项目可实现年销售收入 3 亿元,利税 6000 万元。

项目投资财务内部收益率高于基准收益率,净现值大于零,投资回收期短,表明项目具有比较好的经济效益,盈利能力比较强。

9.2 社会效益分析

项目劳动定员 400 人,将为社会创造多个就业机会,增加地方财政收入,促进当地区域经济的发展,具有良好的社会效益。

9.3 环境损益分析

建设项目建成后,将会产生大气、水、噪声、固废以及生态等方面的一系列不良环境影响,在一定程度上会降低当地的环境质量。但本项目中产生的污染物在治理措施上比较成熟和可靠,只要项目建设方积极落实相关的环保措施,确保污染物达标排放,可大大减轻对周围环境影响。

根据估算,本项目工程环保投资为 560 万元,占总投资 16200 万元的 3.5%,属于可接受范围,能够满足项目环保措施经费需求。

9.4 小结

综上所述,本项目的实施具有良好的经济、社会效益,虽然对当地环境产生一定影响,但污染经治理后影响不大,效益远远大于项目的环境成本,因此本项目具有一定的环境经济可行性。

10 环境管理与环境监测

10.1 环境管理

环境管理即以管理工程和环境科学的理论为基础,运用技术、经济、法律、 行政和教育手段,对损害环境质量的生产经营活动加以限制,协调发展生产与保 护环境的关系,使生产目标与环境目标统一,经济效益与环境效益统一。

有效的环境管理工作,是贯彻评价提出的清洁生产措施,实行"生产全过程污染控制"的重要手段,是工程建设满足环境目标的基本保障,是最大限度减小工程运行后对环境带来的不利影响的有效措施。只有加强环境管理工作,将环境管理和环境监控纳入整个管理体系中,时刻掌握工程运行过程对环境的影响,才能保证企业以最小的代价取得最大的环境和经济效益,使企业沿着高效、增产、减污的可持续发展道路健康发展,实现生产与环境保护协调发展。

10.1.1 环境管理机构设置

根据《建设项目环境保护设计规定》,新建、技改企业应设置环境保护管理 机构,负责组织、落实、监督整个企业环保工作,因此,本工程需建成相应的管 理机构,以落实和实施环境管理制度。

环境管理体系是企业生产管理体系的重要内容之一,其目的在于发展生产的 同时节约能源、降低原材料的消耗,控制污染物总量排放,减少对环境的影响, 有利于清洁生产促进法的实施。环境管理的实施能够帮助企业及早发现问题,降 低生产成本,为企业创造更好的经济效益和环境效益,树立良好的社会形象。结 合本工程实际,建议企业设置专职负责环境管理工作的部门,直接归属总经理领导,统一进行环境管理和安全生产管理。

环保管理人员应具备生产管理经验和环保基础知识和清洁生产知识,熟悉企业生产特点,由责任心、组织能力强的人员担任;同时在各车间培训若干有经验、责任心强的技术人员担任车间兼职环保管理人员,以随时掌握企业生产状况和各项环保设施的运行情况,同时也有利于环保措施的落实。

10.1.2 环境管理机构职责

环境管理机构职能如下:

- 1、督促、检查本企业执行国家有关环境保护方针、政策、法规及企业环境保护制度,贯彻执行"三同时"的规定,并参加有关方案的审定及竣工验收工作;
- 2、根据项目生产特点和产污情况,制定全厂环境管理办法,按照国家和当 地的有关规定,制定全厂污染综合防治的经济技术原则,制定切实可行的环保管 理制度和条例;
 - 3、负责组织企业污染源调查,并按月或季度编写企业环境质量报告;
- 4、把污染源监督和"三废"排放纳入日常管理工作,并落实到车间、班组和岗位:
- 5、按照责、权、利实行奖罚制度,对违反制度的行为根据情节给予处罚, 对有功人员给予奖励;
- 6、收集、整理和推广环保技术和经验,组织对本企业环保人员的培训和环保技术情报的交流,推广国内、外先进的污染防治技术和经验,对运行中出现的环保问题及时解决:
 - 7、配合上级环保主管部门,贯彻落实有关环保法规和规定;
 - 8、负责本企业污染事故的调查和处理:
 - 9、做好环境统计工作,建立环保档案:
- 10、与有关组织合作,积极开展清洁生产活动,广泛开展环保宣传教育活动, 普及环境科学知识。

10.1.3 环境管理制度

1、排污定期报告制度

要定期向当地环保部门报告污染治理设施运作情况、污染物排放情况及污染事故、污染纠纷等情况。

2、污染处理设施的管理制度

对污染治理设施的管理必须与生产经营活动一起纳入企业的日常管理中,要建立岗位责任制,制定操作规程,建立管理台帐。

3、奖惩制度

企业应设置环境保护奖惩制度,对爱护环保设施,节能降耗、改善环境者实行奖励;对不按环保要求管理,造成环保设施损坏、环境污染和资源、能源浪费者予以处罚。

4、制定各类环保规章制度

制定全公司环境方针、环境管理手册及一系列作业指导书以促进全公司的环境保护工作,使环境保护工作规范化和程序化,通过重要环境因素识别、提出改进措施,将全公司环境污染的影响逐渐降低。

10.1.4 环境管理程序

环境管理工作程序见以下程序图:

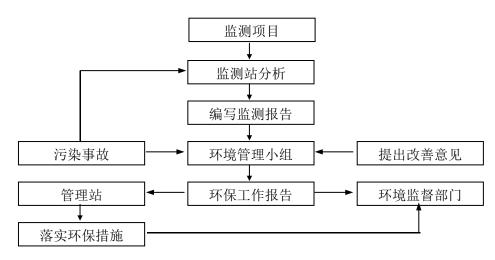


图 10.1.1 环境管理工作程序图

10.1.5 排污口规范化管理

- (1) 排污口规范化管理依据
- ①《关于开展排污口规范化整治工作的通知》国家环境保护总局(环发【1999】 24号);
 - ②《排污口规范化整治技术》国家环境保护总局(环发【1999]24号附件二)。
 - (2) 规范化排污口管理

按照国家环保总局环监《排污口规范化整治技术要求》,对企业排污口规范 化管理具体要求见表 10.1-1。

	衣 10.1-1 排行口燃泡化自连安水衣
项目	主要要求内容
	①凡向环境排放污染物的一切排污口必须进行规范化管理;
	②将总量控制的污染物排污口及行业特征污染物排放口列为管理的重点;
基本原则	③排污口设置应便于采样和计量监测,便于日常现场监督和检查;
	④如实向环保行政主管部门申报排污口位置,排污种类、数量、浓度与排放去
	向等。

表 10.1-1 排污口规范化管理要求表

技术要求	型域 ①排污口位置必须按照环监(1996)470号文要求合理确定,实行规范化管理;	
12八安水	②具体设置应符合《污染源监测技术规范》的规定与要求。	
	①排污口必须按照国家《环境保护图形标志》相关规定,设置环保图形标志牌;	
	②标志牌设置位置应距排污口及固体废物贮存(处置)场或采样点较近且醒目	
立标管理	处,设置高度一般为标志牌上缘距离地面约 2m;	
■ 立 你 旨 连	③重点排污单位排污口设立式标志牌,一般单位排污口可设立式或平面固定式	
	提示性环保图形标志牌;	
	④对危险物贮存、处置场所,必须设置警告性环境保护图形标志牌。	
	①使用《中华人民共和国规范化排污口标志登记证》,并按要求填写有关内容;	
	②严格按照环境管理监控计划及排污口管理内容要求, 在运行期间将主要污染	
建档管理	物种类、数量、排放浓度与去向,立标及环保设施运行情况记录在案,并及时	
	上报;	
	③选派有专业技能环保人员对排污口进行管理,做到责任明确、奖罚分明。	

企业需确认排污口按照排污口规范化管理要求表建设,同时各污染源排放口应设置专项图标,执行《环境图形标准排污口(源)》(GB15563.1-1995),见表 10.1-2。

图形标志设置位置 要求 废水排放口 废气排放口 噪声排放源 危险固体废物 ·般固体废物 提示符号 表示污水向 表示废气向 表示噪音向 表示危险固体 表示一般固体 功能 水体排放 大气环境排放 外环境排放 废物暂存场 废物暂存场 背景颜色 绿色 黄色 绿色 图形颜色 白色 黑色 白色

表 10.1-2 各排污口(源)标志牌设置示意图

要求各排污口(源)提示标志形状采用正方形边框,背景颜色采用绿色,图形颜色采用白色。标志牌应设在与之功能相应的醒目处,并保持清晰、完整。

(3) 排污口规范化的范围和时间

根据要求,一切新建、扩建、改建的排污单位以及限期治理的排污单位必须 在建设污染治理设施的同时,建设规范化排放口。因此,各类污染物排放口必须 规范化,而规范化工作的完成必须与污染治理设施同步,并列入竣工环境保护验 收内容。

(4) 排污口建档

应在排放口树立或挂上排放口标志牌,并认真如实填写《中华人民共和国规

范化排污口标志登记证》的有关内容,由环保主管部门签发登记证。环保主管部门和建设单位可分别按以下内容建立排放口管理的专门档案:排放口性质与编号;排放口位置;排放主要污染物的种类、数量、浓度;排放去向;达标情况;设施运行情况及整改意见。

10.2 环境监测

环境监测主要对企业生产过程中排放的污染物进行定期监测,判断环境质量,评价环保设施及其治理效果,为防治污染提供科学依据。要求企业制定各项环境保护管理制度,包括环保设施运行管理制度、环保处理设施定期保养制度、废水废气监测制度等。

10.2.1 环境监测机构

由于该企业成立环境监测机构不大现实,因此,建议企业委托当地环境监测 机构或委托有资质的公司进行监测。

10.2.2 环境监测计划

根据项目污染源情况,建设单位应将污染源纳入企业环境管理内容,按要求定期委托有资质的机构进行环境监测,监测内容应覆盖厂区废水、废气、噪声排放情况及土壤、地下水质量状况,监测频次满足《排污单位自行监测技术指南总则》(HJ819-2017)、《排污许可证申请与核发技术规范总则》(HJ942-2018)、《排污许可证申请与核发技术规范总则》(HJ 1027—2019)等相关要求。本工程运行期环境监测计划见表 10.2-1。

项目	内容	监测因子	监测频次
	厂界	颗粒物、二甲苯、乙酸丁酯、 非甲烷总烃、TVOC、臭气浓度	1 次/年
	厂房外	非甲烷总烃	1 次/年
I DA001	颗粒物、二甲苯、乙酸丁酯、 非甲烷总烃、TVOC、臭气浓度	1 次/年	
废气	DA002	颗粒物、非甲烷总烃	1 次/年
	DA003	颗粒物、非甲烷总烃	1 次/年
	DA004	非甲烷总烃	1 次/年
	DA005	颗粒物、二甲苯、乙酸丁酯、 非甲烷总烃、TVOC、臭气浓度	1 次/年
	DA006	颗粒物、非甲烷总烃	1 次/年

表 10.2-1 营运期环境监测计划

	DA007	颗粒物、非甲烷总烃	1 次/年
	DA008	非甲烷总烃	1 次/年
	DA009	颗粒物	1 次/年
	DA010	颗粒物	1 次/年
	DA011	颗粒物	1 次/年
	DA012	颗粒物	1 次/年
	DA013	颗粒物	1 次/年
	DA014	颗粒物	1 次/年
	DA015	颗粒物	1 次/年
	DA016	颗粒物	1 次/年
噪声	高噪声设备噪声源强	dB (A) 每季度监测	包柔的协测 1 岁
1	项目边界噪声值		母字 及监侧 I 仏
废水	废水总排口	COD、氨氮、SS 等	1 次/年
	雨水排放口	1 次/年 10 颗粒物	1 次/日 a
土壤	油漆仓库、危废仓库旁	1	1 次/5 年
地下水	场地下游布设1个	亚硝酸盐等 37 项基本项目、二	1 次/年
	产生量统计、成分组成分析	/	每天记录
固废	临时堆存设施情况、处置情 况、危险废物台账	/	每天记录

备注: ^а 排放口有流动水排放时开展监测,排放期间按日监测。如监测一年无异常情况,每季度第一次有流动水排放时开展按日监测。

上述监测内容可委托有资质公司进行监测,监测结果以报告形式上报当地环保部门。

项目建成后,环保部门应对该企业环境管理及监测的具体情况加以监督。

10.2.3 竣工验收监测

项目投入试运营后,建设单位应及时和有资质的单位取得联系,对本项目环保"三同时"设施组织竣工验收监测、编制竣工验收监测报告、组织专家评审及验收结果的公示。项目实施后环保设施"三同时"验收监测计划主要从以下几方面入手:

- ①各生产装置的实际生产能力是否具备竣工验收条件。
- ②按照"三同时"要求,各项环保设施是否安装到位,运转是否正常。
- ③各类固废(液)处置情况。
- ④是否有风险应急预案和应急计划。

- ⑤污染物排放总量的核算,各指标是否控制在环评批复范围内。
- ⑥排污口是否规范化。
- ⑦项目环保竣工验收监测基本污染因子及频次见表 10.2-2。

表 10.2-2 项目环保竣工验收监测方案一览表

项目	内容	监测因子	监测频次
	DA001	颗粒物、二甲苯、乙酸丁酯、非甲 烷总烃、TVOC、臭气浓度	
	厂房外	非甲烷总烃	
	DA002	颗粒物、非甲烷总烃	
	DA003	颗粒物、非甲烷总烃	甲 两天/每天3次
	DA004	非甲烷总烃	
	DA005	颗粒物、二甲苯、乙酸丁酯、非甲 烷总烃、TVOC、臭气浓度	
	DA006	颗粒物、非甲烷总烃	
	DA007	颗粒物、非甲烷总烃	
废气	DA008	非甲烷总烃	两天/每天3次
	DA009	颗粒物	
	DA010	颗粒物	
	DA011	颗粒物	
	DA012	颗粒物	两天/每天3次 两天,昼间监测一次 两天/每天4次
	DA013	颗粒物	
	DA014	颗粒物	
	DA015	颗粒物	
	DA016	颗粒物	
	企业边界	颗粒物、二甲苯、乙酸丁酯、非甲 烷总烃、TVOC、臭气浓度	
噪声	厂界噪声值	dB (A)	
废水	厂区废水排放口	流量、PH、SS、COD _{Cr} 、氨氮、总 磷、总氮、BOD₅等	两天/每天 4 次
固废	临时堆存设施情况、处置情 况	一般固废、危险废物	/

10.3 排污许可管理

根据《固定污染源排污许可分类管理名录(2019 年版)》和《2020 年纳入排污许可管理的行业和管理类别表》,本项目属于"十六、家具制造业 21"——"35、木质家具制造 211"中的"除重点管理以外的年使用 10 吨及以上溶剂型涂料或者胶粘剂(含稀释剂、固化剂)的、年使用 20 吨及以上水性涂料或者胶粘剂的、

有磷化表面处理工艺的",项目实行排污许可简化管理。企业应当在启动生产设施或者发生实际排污之前进行依法重新领取排污许可证。

10.4 建立环境监测档案

建立环境监测档案,以便发现事故时,可以及时查明事故发生的原因,使污染事故能够得到及时处理。

10.5 环境管理台账

根据《排污许可证申请与核发技术规范 家具制造工业》(HJ 1027—2019) 环境管理台账相关要求如下:

1、一般原则

排污单位应建立环境管理台账制度,落实环境管理台账记录的责任部门和责任人,明确工作职责,包括台账的记录、整理、维护和管理等,台账记录频次和内容须满足排污许可证环境管理要求,并对台账记录结果的真实性、完整性和规范性负责。

台账应按照电子化储存和纸质储存两种形式同步管理。

2、记录内容

包括基本信息、生产设施运行管理信息、污染防治设施运行管理信息、污染防治设施非正常情况记录信息、监测记录信息及其他环境管理信息等,参照资料性附录 A。生产设施、污染防治设施、排放口编码应与排污许可证副本中载明的编码一致。

(1) 生产设施运行管理信息

排污单位应定期记录生产设施运行状况并留档保存,应按班次至少记录以下内容:

- a)生产运行情况包括生产设施、公用单元和全厂运行情况,重点记录排污许可证中相关信息的实际情况及与污染物治理、排放相关的主要运行参数。正常情况各生产单元主要生产设施的累计生产时间,主要产品产量,涂料、胶黏剂、固化剂等原辅材料使用情况等数据。
 - b)产品产量:记录统计时段内主要产品产量。
 - c)含挥发性有机物原辅料:记录名称、用量、主要成分含量、含水率。
 - d) 燃料:记录种类、用量、成分、热值、品质。涉及二次能源的需建立能源

平衡报表, 应填报一次购入能源和二次转化能源。

记录内容参见附录 A 中表 A.2、A.3。

- (2) 污染防治设施运行管理信息
- a) 正常情况:污染防治设施运行信息应按照设施类别分别记录设施的实际运行相关参数和维护记录。
 - 1)有组织废气治理设施记录设施运行时间、运行参数等,见附表 A.4。
 - 2)无组织废气排放控制记录措施执行情况,见附表 A.5。
- 3)废水处理设施包括预处理设施、生化处理设施、深度处理设施及回用设施四部分,分别记录每日进水水量、出水水量、药剂名称及使用量、投放频次、电耗、污泥产生量及污泥处理处置去向等,见附表 A.6。
- 4)固体废物产生及处置运行管理信息记录产生环节、处置去向等,参见附表 A.7。
- b)非正常情况:污染防治设施非正常信息按工况记录,每工况期记录一次, 内容应记录起止时段设施名称、编号、非正常起始时刻、非正常恢复时刻、污染 物排放量、排放浓度、事件原因、是否报告、应对措施等。记录内容参见附表 A.8。

(3) 其他环境管理信息

排污单位应记录无组织废气污染防治设施运行、维护、管理相关的信息。排污单位在特殊时段应记录管理要求、执行情况(包括特殊时段生产设施运行管理信息)。固体废物收集处置信息等。

(4) 监测记录信息

排污单位应建立污染防治设施运行管理监测记录,记录、台账的形式和质量控制参照 HJ/T 373、 HJ819 等相关要求执行。

记录内容参见附录 A 中表 A.9~A.12。

3、记录频次

- (1) 生产设施运行管理信息
- a)生产运行状况:按照排污单位生产批次记录,每批次记录 1 次。
- b)产品产量:连续性生产的排污单位产品产量按照批次记录,每批次记录 1次。周期性生产的设施按照一个周期进行记录,周期小于 1天的按照 1 天记录。

- c)原辅料、燃料用量:按照批次记录,每批次记录 1 次。
 - (2) 污染防治设施运行管理信息
- a)正常情况
- 1)污染防治设施运行状况:按照排污单位生产班制记录,每班次记录1次。
- 2)污染物产排污情况:连续排放污染物的,按班制记录,每班次记录 1 次。 非连续排放污染物的,按照产排污阶段记录,每个产排污阶段记录 1 次。安装自 动监测设施的按照自动监测频率记录,DCS 原则上以 7 天为周期截屏。
- 3)药剂添加情况:采用批次投放的,按照投放批次记录,每投放批次记录 1次。采用连续加药方式的,每班次记录 1次。

b) 非正常情况

按照非正常情况期记录,1次/非正常情况期,包括起止时间、污染物排放浓度、非正常原因、应对措施、是否报告等。

4、记录保存

(1) 纸质存储

纸质台账应存放于保护袋、卷夹或保护盒等保存媒介中,专人保存于专门的档案保存地点,并由相关人员签字。档案保存应采取防光、防热、防潮、防细菌及防污染等措施。纸质类档案如有破损应及时修补,并留存备查。

(2) 电子存储

电子台账保存于专门存贮设备中,并保留备份数据。存贮设备由专人负责管理,定期进行维护。电子台账根据地方生态环境主管部门管理要求定期上传。

11 环境影响评价结论

11.1 建设项目环保审批要求符合性分析

11.1.1 建设项目环保审批原则符合性分析

1、"三线一单"符合性分析

生态保护红线:本项目位于"ZH33112220051浙江省丽水市缙云县产业集聚重点管控区",项目不在当地饮用水源、风景区、自然保护等生态保护区内,不在缙云县生态保护红线范围内,满足生态保护红线要求。

资源利用上线:本项目营运过程中需消耗一定量的电及水资源,利用量相对区域资源总量较少;项目用地为工业用地,符合当地土地规划要求,亦不会达到项目所在区域土地资源利用上线,不突破地区能源、水、土地等资源消耗的"天花板"。

环境质量底线:本项目拟建地址周边常规大气污染物监测值均能符合《环境空气质量标准》(GB3095-2012)二级标准,空气质量良好;水质现状符合III类水功能区划的要求;环境噪声可满足功能区要求。项目营运后对环境影响很小,符合环境质量底线要求。

本项目建成后各污染物均能达标排放,在落实本评价提出的污染防治措施、 严格落实排污总量制度下项目排放的污染物对周边环境影响较小,不会改变现有 环境质量等级,项目的实施不会影响区域环境质量目标的实现,符合环境质量底 线要求。

生态准入清单:本项目位于"ZH33112220051浙江省丽水市缙云县产业集聚重点管控区",生产过程采取相应的污染防治措施后,满足该区空间布局引导、区域污染物排放管控要求、区域环境风险防控、资源开发效率要求,因此符合生态准入清单要求。

综上,本项目符合"三线一单"相关要求。

2、 达标排放符合性分析

本项目污染物产生规律简单可控,治理措施成熟可靠,根据工程分析和环境 影响预测结论,只要建设单位能按照本环评要求落实"三废"治理措施,确保废 水、废气、噪声治理设施正常运行,则项目运营期污染物排放能达到国家相关排 放标准要求,符合达标排放要求。

3、总量控制符合性分析

本项目属于迁建项目,根据分析,确定本项目纳入总量控制因子的为 COD_{Cr}、NH₃-N、VOC、烟粉尘。本次迁建项目排放的 COD、NH₃-N 这 2 项总量控制指标由建设单位向当地生态环境主管部门申请,在获得该项目环评批复文件后,凭环评批复文件及时到浙江省排污权交易网报名并参加排污权网上竞价,获得所需排污权指标。其中烟(粉)尘、VOCs 目前尚未进行排污权交易,迁建项目增加量在缙云县区域内平衡。

本项目总量控制指标平衡表见下表。

序	废水		废气		
号	总量控制指标	COD	氨氮	VOC	烟粉尘
1	原有项目排放量	0.028	0.001	1.224	0.107
2	以新带老削减量	0.028	0.001	1.224	0.107
3	迁建项目排放量	0.527	0.018	3.098	11.570
4	合计排放总量	0.527	0.018	3.098	11.570
5	己获得排污权量	0	0	0	0
6	需要进行区域削减替代的量	0.527	0.018	1.874	11.463
7	区域削减替代比例	1:1	1:1	1:1	1:1.5
8	区域替代削减量	0.527	527 0.019	0.018 2.811	17.195
0	(排污权交易量)	0.327	0.018		

表 11.1-1 总量指标平衡表(单位: t/a)

4、维持环境质量符合性分析

项目所在区域目前环境质量尚可,基本满足环境功能区规划的要求,项目实施后,由预测结果表明,在正常生产情况下,污染物达标排放前提下,仍能维持区域环境质量,满足环境功能区域规划的要求。

11.1.2 建设项目环保审批要求符合性分析

1、环保设施正常运行要求

项目建设单位应委托有资质的单位,对项目运营期产生的废水、废气、噪声治理措施进行方案设计论证,并按照"三同时"的原则与主体工程同时设计、同时施工、同时投产使用,并保障项目环境保护设施的正常运行。以确保项目产生的污染可以妥善处理,不对环境造成影响。

2、风险防范措施的符合性

本项目环境风险主要是泄漏、火灾等事故风险。企业从生产、贮运、贮存等

多方面积极采取防护措施,加强风险管理,通过相应的技术手段降低风险发生概率,一旦风险事故发生后,及时采取风险防范措施及应急预案,可以使风险事故对环境的危害得到有效控制,将事故风险控制在可以接受的范围内。

因此, 本项目的建设符合风险防范措施要求

11.1.3 其他审批要求符合性分析

11.1.3.1 相关规划符合性分析

根据分析,本项目符合《缙云县新建镇洋山工业区与零星地块控制性详细规划(2022.8)》相关要求。

11.1.3.2 产业政策符合性分析

1、《产业结构调整指导目录(2019年本)》符合性分析

对照国家产业政策和国家发改委《产业结构调整指导目录(2019 年本)》, 本项目不属于鼓励类、限制类和淘汰类项目;本项目生产设备为常用设备,不属于淘汰类设备。因此,符合国家的产业政策。

本项目已取得缙云县经济商务局登记备案(项目代码: 2203-331122-07-02-296379)。因此,本项目建设符合地方产业政策要求。

2、《丽水市(制造业)产业结构调整优化和发展导向目录(2021年版)》符合性分析。

本项目为C2110木质家具制造,对照《丽水市(制造业)产业结构调整优化和发展导向目录(2021年版)》,不属于《导向目录》中的鼓励类、限制类和淘汰类、禁止类项目,"不属于以上四类且符合国家相关法律法规和政策规定的,为允许类。"本项目符合国家相关法律法规和政策规定,因此,本项目为允许类项目。

3、与《长江经济带发展负面清单指南(试行,2022年版)》浙江省实施细则符合性分析

表 11.1-2《长江经济带发展负面清单指南(试行.2022 年版)》浙江省实施细则符合性分析

表

序号	管控要求	符合性
1	港口码头项目建设必须严格遵守《中华人民共和国港口法》、 交通运输部《港口规划管理规定》、《港口工程建设管理规定》 以及《浙江省港口管理条例》的规定。	不涉及

	禁止建设不符合《全国沿海港口布局规划》、《全国内河航	
	道与港口布局规划》、《浙江省沿海港口布局规划》、《浙江省	
	内河航运发展规划》以及项目所在地港口总体规划、国土空间规	
2	划的港口项目。	不涉及
	经国务院或国家发展改革委审批、核准的港口码头项目,军	, , ,
	事和渔业港口码头项目,按照国家有关规定执行。城市休闲旅游	
	配套码头、陆岛交通码头等涉及民生的港口码头项目,结合国土	
	空间规划和督导交通专项规划等另行研究执行。	
	禁止在自然保护区核心区、缓冲区的岸线和河段范围内投资	
	建设旅游和生产经营项目。	
	禁止在风景名胜区核心景区的岸线和河段范围内投资建设与	
	风景名胜资源保护无关的项目。	
	禁止在森林公园的岸线和河段范围内毁林开垦和毁林采石、	
3	采砂、采土以及其他毁林行为。	不涉及
	禁止在地质公园的岸线和河段范围内以及可能对地质公园造	1191久
	成影响的周边地区采石、取土、开矿、放牧、砍伐以及其他对保	
	护对象有损害的活动。	
	禁止在Ⅰ级林地、一级国家级公益林内建设项目。	
	自然保护区核心区、缓冲区、风景名胜区核心景区、森林公	
	园、地质公园等由林业主管部门会同相关管理机构界定。	
	在饮用水水源一级保护区的岸线和河段范围内:	本项目选址不
	禁止新建、改建、扩建与供水设施和保护水源无关的项目。	
1	禁止网箱养殖、投饵式养殖、旅游、使用化肥和农药等可能	在饮用水水源
4	污染饮用水水体的投资建设项目。	一级保护区的
	禁止游泳、垂钓以及其他可能污染水源的活动。	岸线和河段范
	禁止停泊与保护水源无关的船舶。	围内
	在饮用水水源二级保护区的岸线和河段范围内:	
	禁止新建、改建、扩建排放污染物的投资建设项目。	
	禁止网箱养殖、使用高毒、高残留农药等可能污染饮用水水	本项目选址不
	 体的投资建设项目。	在饮用水水源
5	禁止设置排污口,禁止危险货物水上过驳作业。	二级保护区的
	禁止贮存、堆放固体废物和其他污染物,禁止排放船舶洗舱	岸线和河段范
	 水、压载水等船舶污染物、禁止冲洗船舶甲板。	围内
	从事旅游活动的,应当按照规定采取措施,防止污染饮用水	, , , ,
	水体。	
	在饮用水水源准保护区的岸线和河段范围内:	
	禁止新建、扩建水上加油站、油库、规模化畜禽养殖场等严	本项目选址不
	重污染水体的建设项目,或者改建增加污染量的建设项目。	在饮用水水源
6	禁止设置装卸垃圾、粪便、油类和有毒物品的码头。	准保护区的岸
	禁止运输剧毒物品、危险废物以及国家规定禁止通过内河运	线和河段范围
	输的其他危险化学品。	内
	禁止在水产种质资源保护区的岸线和河段范围内新建排污	本项目选址不
7	口,以及围垦河道、围湖造田、围海造地或围填海等投资建设项	在水产种质资
	目。因江河治理确需围垦河道的,须论证后经省水利厅审查同意,	源保护区的岸
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

	报省人民政府批准。已经围湖造田的,须按照国家规定的防洪标	线和河段范围
	准进行治理,有计划退田还湖。	内
	禁止在《长江岸线保护和开发利用总体规划》划定的岸线保护区内投资建设除保障防洪安全、河势稳定、供水安全以及保护	本项目不在《长
8	生态环境、已建重要枢纽工程以外的项目,禁止在岸线保留区内投资建设除保障防洪安全、河势稳定、供水安全、航道稳定以及保护生态环境以外的项目。禁止在《全国重要江河湖泊水功能区划》划定的河段保护区、保留区内投资建设不利于水资源及自然	江岸线保护和 开发利用总体 规划》划定的岸 线保护区内
9	生态保护的项目。 在生态保护红线和永久基本农田范围内,准入条件采用正面清单管理,禁止投资建设除国家重大战略资源勘查项目、生态保护修复和环境治理项目、重大基础设施项目、军事国防项目以及农牧民基本生产生活等必要的民生项目以外的项目,禁止不符合主导功能定位、对生态系统功能有扰动或破坏的各类开发活动,禁止擅自建设占用和任意改变用途。	本项目不在生 态保护红线和 永久基本农田 范围内
10	禁止新建化工园区。禁止在合规园区外新建、扩建钢铁、石 化、化工、焦化、建材、有色等高污染项目。	不涉及
11	禁止新建、扩建不符合国家石化、现代煤化工等产业布局规 划的项目。原则上禁止新建露天矿山建设项目。	不涉及
12	禁止新建、扩建法律法规和相关政策命令禁止的落后产能项目,对列入《国家产业结构调整指导目录(2011年本2013年修正版)》淘汰类中的落后生产工艺装备、落后产品投资项目,列入《外商投资准入特别管理措施(负面清单)(2018年版)》的外商投资项目,一律不得核准、备案。禁止向落后产能项目和严重过剩产能行业项目供应土地。	本项目不属于 鼓励类、限制类 和淘汰类项目; 本项目生产设 备为常用设备, 不属于淘汰类 设备。商投资理措 。《外别管理措 施》的外商投资 项目
13	禁止核准、备案严重过剩产能行业新增产能项目、部门、机构禁止办理相关的土地(海域)供应、能评、环评审批和新增授信支持等业务。	本项目目前已 登记备案
14	禁止备案新建扩大产能的钢铁、焦化、电解铝、铸造、水泥和平板玻璃项目。钢铁、水泥、平板玻璃项目确需新建的,须制定产能置换方案并公告,实施减量或等量置换。	不涉及

由上表可知,本项目满足《长江经济带发展负面清单指南(试行,2022年版)》浙江省实施细则中的各项管控要求。

4、与《浙江省"十四五"挥发性有机物综合治理方案》符合性分析

为深入推进"十四五"挥发性有机物治理,进一步改善环境空气质量,依据《中华人民共和国大气污染防治法》《浙江省大气污染防治条例》和《浙江省空气质

量改善"十四五"规划》,浙江省生态环境厅于 2021 年 8 月 20 日印发了《浙江省 "十四五"挥发性有机物综合治理方案》(浙环发[2021]10 号)。本项目与该文件 相符性分析详见表 11.1-3。

表 11.1-3 与《浙江省"十四五"挥发性有机物综合治理方案》符合性判定表

序号		整治要求	项目情况	是否 符合
1	优化产 业结构	引导石化、化工、工业涂装、包装印刷、合成革、化 纤、纺织印染等重点行业合理布局,限制高VOCs排 放化工类建设项目,禁止建设生产和使用VOCs含量 限值不符合国家标准的涂料、油墨、胶粘剂、清洗剂 等项目。贯彻落实《产业结构调整指导目录》、《国 家鼓励的有毒有害原料(产品)替代品目录》,依法 依规淘汰涉VOCs排放工艺和装备,加大引导退出限 制类工艺和装备力度,从源头减少涉VOCs污染物产 生。	项目使用的涂料均 满足《低挥发性有机 化合物含量涂料产 品技术要求》(GB/T	符合
2	严格环境准	严格执行"三线一单"为核心的生态环境分区管控体系,制(修)订纺织印染(数码喷印)等行业绿色准入指导意见。严格执行建设项目新增VOCs排放量区域削减替代规定,削减措施原则上应优先来源于纳入排污许可管理的排污单位采取的治理措施,并与建设项目位于同一设区市。上一年度环境空气质量达标的区域,对石化等行业的建设项目VOCs排放量实行等量削减;上一年度环境空气质量不达标的区域,对石化等行业的建设项目VOCs排放量实行2倍量削减,直至达标后的下一年再恢复等量削减。	本项目符合《缙云县 "三线一单"生态环 境分区管控方案》相 关要求,项目所在区 域属于达标区,新增 VOCs排放量按1:15	符合
3	全面提 升生产 工艺绿 色化水 平	石化、化工等行业应采用原辅材料利用率高、废弃物产生量少的生产工艺,提升生产装备水平,采用密闭化、连续化、自动化、管道化等生产技术,鼓励工艺装置采取重力流布置,推广采用油品在线调和技术、密闭式循环水冷却系统等。工业涂装行业重点推进使用紧凑式涂装工艺,推广采用辊涂、静电喷涂、高压无气喷涂、空气辅助无气喷涂、热喷涂、超临界二氧化碳喷涂等技术,鼓励企业采用自动化、智能化喷涂设备替代人工喷涂,减少使用空气喷涂技术。包装印刷行业推广使用无溶剂复合、共挤出复合技术,鼓励采用水性凹印、醇水凹印、辐射固化凹印、柔版印刷、无水胶印等印刷工艺。鼓励生产工艺装备落后、在既有基础上整改困难的企业推倒重建,从车间布局、工艺装备等方面全面提升治理水平。	项目采用3种上漆方 式:喷枪空气喷涂、 辊涂和淋涂	符合
4	行工业	严格执行《大气污染防治法》第四十六条规定,选用 粉末涂料、水性涂料、无溶剂涂 料、辐射固化涂料 等环境友好型涂料和符合要求的(高固体分)溶剂型	足《低挥发性有机化	符合

	业使用	涂料。工业涂 装企业所使用的水性涂料、溶剂型涂	技术要求》(GB/T	
	低VOCs	料、无溶剂涂料、辐射固化涂料应符合《低挥发 性	38597-2020)要求,	
	含量原	有机化合物含量涂料产品技术要求》规定的 VOCs	并建立台账,记录原	
	辅材料	含量限值要求,并建立台账,记录原辅材料的使用量、	辅材料的使用量、废	
		废弃量、去向以及 VOCs 含量。	弃量、去向以及	
			VOCs含量	
		全面排查使用溶剂型工业涂料、油墨、胶粘剂、清洗		
	大力推	剂等原辅材料的企业,各地应结合本地产业特点和本		
	进低	方案指导目录(见附件 1),制定低 VOCs 含量原	项目使用的涂料满	
	VOCs	辅材料源头替代实施计划,明确分行业源头替代时间	足《低挥发性有机化	
_		表,按照"可替尽替、应代尽代"的原则,实施一批替	合物含量涂料产品	不进五
5	含量原	代溶剂型原辅材料的项目。加快低VOCs含量原辅材	技术要求》	不涉及
	辅材料	料研发、生产和应用,在更多技术成熟领域逐渐推广	(GB/T38597-2020)	
	的源头 替代。	使用低 VOCs 含量原辅材料,到2025年,溶剂型工	要求	
	自行(。 	业涂料、油墨、胶粘剂等使用量下降比例达到国家要		
		求。		
		在保证安全前提下,加强含VOCs物料全方位、全链	项目涂装工序(包含	
		条、全环节密闭管理,做好VOCs物料储存、转移和	调漆、辊涂/淋涂、	
	输	输送、设备与管线组件泄漏、敞开液面逸散以及工艺	喷漆、晾干)均设置	
	亚枚坎	过程等无组织 排放环节的管理。生产应优先采用密	「 「 「 「 「 「 「 「 「 「 「 「 「	
6	严格控6 制无组	闭设备、在密闭空间中操作或采用全密闭集气罩 收	饭、饭菜系统,均留 闭收集、合理处理,	符合
0	切排放	集方式,原则上应保持微负压状态,并根据相关规范	并委托相关环保设	11 II
	5分升以	合理设置通风量;采用局部集气罩的,距集气罩开口	施设计单位对废气	
		面最远处的VOCs无组织排放位置控制风速应不低于	处理进行规范设计、	
		0.3米/秒。对VOCs 物料储罐和污水集输、储存、处	处理近行	
		理设施开展排查,督促企业按要求开展专项治理。	ルピュ。	
		企业新建治理设施或对现有治理设施实施改造,应结		
		合排放 VOCs 产生特征、生产工况等合理选择治理		
		技术,对治理难度大、单一治理工艺难以稳定达标的,	本项目油性漆喷涂	
		要采用多种技术的组合工艺。采用活性炭吸附技术	产生的有机废气经	
	建设适	的,吸附装置和活性炭应符合相关技术要求,并按要	活性炭吸附+活性炭	
	官高效	求足量添加、定期更换活性炭。组织开展使用光催化、	脱附催化燃烧处理	
7	的治理	光氧化、低温等离子、一次性活性炭或上述组合技术	后高空排放;水性漆	符合
	设施	等 VOCs 治理设施排查,对达不到要求的,应当更	喷涂产生的有机废	
		换或升级改造,实现稳定达标排放。到2025年,完成	气经水帘机/水喷淋	
		5000家低效VOCs治理设施改造升级(见附件3),石	塔处理后高空排放。	
		化行业的VOCs综合去除效率达到70%以上,化工、		
		工业涂装、包装印刷、合成革等行业的VOCs 综合去		
		除效率达到 60%以上。		
	加强治	按照治理设施较生产设备"先启后停"的原则提升治		
	理设施 理设施 正常运行条件后方可启动生产设备,在生产设备停 按要求执行			
8		按要求执行	符合	
	理	止、残留VOCs收集处理完毕后,方可停运治理设施。		
		VOCs治理设施发生故障或检修时,对应生产设备应		

装工
s排放 符合
〒 符合
- krk k
亍 符合
ŕ

通过分析可知,本项目建设基本符合《浙江省"十四五"挥发性有机物综合治理方案》(浙环发[2021]10号)相关要求。

5、《重点行业挥发性有机物综合治理方案》符合性分析

本项目与《重点行业挥发性有机物综合治理方案》的相关要求相符性分析见下表:

表 11.1.-4 与《重点行业挥发性有机物综合治理方案》符合性判定表

分类	内容	序 号	判断依据	本项目	是否 符合
总体要求	大力推 进源头 替代	1	通过使用水性、粉末、高固体分、无溶剂、辐射固化等低 VOCs 含量的涂料,水性、辐射固化、植物基等低 VOCs 含量的油墨,水基、热熔、无溶剂、辐射固化、改性、生物降解等 VOCs 含量的胶粘剂,以及低 VOCs 含量、低反应活性的清洗剂等,替代溶剂型涂料、油墨、胶粘剂、清洗剂等,从源头减少 VOCs 产生。工业涂	项目使用的涂料满足《低挥发性有机化合物含量涂料产品技术要求》(GB/T38597-2020)要求。	符合

加强政策引导	2	装、包装印刷等行业要加大源头替代力度;鼓励加快低 VOCs 含量涂料、油墨、胶粘剂等研发和生产。 企业采用符合国家有关低 VOCs 含量产品规定的涂料、油墨、胶粘剂等,排放浓度稳定达标且排放速率、排放绩效等满足相关规定的,相应生产工序可不要求建设末端治理设施。使用的原辅材料 VOCs 含量(质量比)低于10%的工序,可不要求采取无组织排放收集措施。	本项目使用的涂料满足《低挥发性有机化合物含量涂料产品技术要求》(GB/T38597-2020)要求,各工段废气均收集处理,满足相关排放标准要求。	符合
	3	重点对含 VOCs 物料(包括含 VOCs 原辅材料、含 VOCs 产品、含 VOCs 废料以及有机聚合物材料等)储存、转移和输送、设备与管线组件泄漏、敞开液面逸散以及工艺过程等五类排放源实施管控,通过采取设备与场所密闭、工艺改进、废气有效收集等措施,削减 VOCs 无组织排放。	本项目对含 VOCs 原料均采取密封存储 和密闭存放,同时对 VOCs 废气排放源点 进行废气收集。	符合
全面加 强无 组织排 放控制	4	加强设备与场所密闭管理。含 VOCs 物料应储存于密闭容器、包装袋,高效密封储罐,封闭式储库、料仓等。含 VOCs 物料转移和输送,应采用密闭管道或密闭容器、罐车等。高VOCs 含量废水(废水液面上方 100毫米处 VOCs 检测浓度超过200ppm,其中,重点区域超过100ppm,以碳计)的集输、储存和处理过程,应加盖密闭。含 VOCs物料生产和使用过程,应采取有效收集措施或在密闭空间中操作。推进使用先进生产工艺。通过采用全密闭、连续化、自动化等生产技术,以及高效工艺与设备等,减少工艺过程无组织排放。	企业对油漆采取密封 存储和密闭存放,同 时对 VOCs 废气排放 源点进行废气收集处 理,减少了无组织排 放。	符合
提高废气收集率	5	遵循"应收尽收、分质收集"的原则,科学设计废气收集系统,将无组织排放转变为有组织排放进行控制。采用全密闭集气罩或密闭空间的,除行业有特殊要求外,应保持微负压状态,并根据相关规范合理设置通风量。采用局部集气罩的,距集气罩开口面最远处的 VOCs 无组织排放位置,控制风速应不低于 0.3 米/秒,有行业要求	本项目涂装工序(包含辊涂/淋涂、调漆、喷漆、晾干)均设置废气收集系统,均密闭收集、合理处理,并委托相关环保设施设计单位对废气处理进行规范设计、施工。	符合

			的按相关规定执行。		
	推进建 设 高 效 设 施	6	企业新建治污设施或对现有治污设施实施改造,应依据排放废气的浓度、组分、风量,温度、湿度、压力,以及生产工况等,合理选择治理技术。鼓励企业采用多种技术的组合工艺,提高 VOCs 治理效率。	本项目油性漆喷涂产生的有机废气经活性炭吸附+活性炭脱附催化燃烧处理后高空排放;水性漆喷涂产生的有机废气经水帘机/水喷淋塔处理后高空排放。	符合
	工业涂 装 VOCs 综合治 理	7	加大汽车、家具、集装箱、电子产品、 工程机械等行业 VOCs 治理力度, 重点区域应结合本地产业特征,加快 实施其他行业涂装 VOCs 综合治 理。	本项目将根据当地 VOCs综合治理要求 落实更新各项治理措 施。	符合
	强化源头控制	8	加快使用粉末、水性、高固体分、辐射固化等低 VOCs 含量的涂料替代溶剂型涂料。金属家具制造大力推广使用粉末涂料工程机械制造大力推广使用水性、粉末和高固体分涂料。电子产品制造推广使用粉末、水性、辐射固化等涂料。	本项目使用的涂料满足《低挥发性有机化合物含量涂料产品技术要求》(GB/T38597-2020)要求。	符合
重点 行业 治理 任务	有效控 制无组 织排放	9	涂料、稀释剂、清洗剂等原辅材料应密闭存储,调配、使用、回收等过程应采用密闭设备或在密闭空间内操作,采用密闭管道或密闭容器等输送。除大型工件外,禁止敞开式喷涂、晾(风)干作业。除工艺限制外,原则上实行集中调配。调配、喷涂和干燥等 VOCs 排放工序应配备有效的废气收集系统。	本项目底漆、面漆、 稀释剂均采取密封存 储和密闭存放,对涂 漆、上漆段废气进行 密闭收集,并配套有 效处理装置。	符合
	推进建设适宜高效的治污设施	10	喷涂废气应设置高效漆雾处理装置。 喷涂、晾(风)干废气宜采用吸附浓 缩+燃烧处理方式,小风量的可采用 一次性活性炭吸附等工艺。调配、流 平等废气可与喷涂、晾(风)干废气 一并处理。使用溶剂型涂料的生产 线,烘干废气宜采用燃烧方式单独处 理,具备条件的可采用回收式热力燃 烧装置。	本项目油性漆喷涂产生的有机废气经活性炭吸附+活性炭脱附催化燃烧处理后高空排放;水性漆喷涂产生的有机废气经水帘机/水喷淋塔处理后高空排放。	符合

通过分析可知,本项目建设基本符合《重点行业挥发性有机物综合治理方案》 相关要求。

6、与《关于加快解决当前挥发性有机物治理突出问题的通知》符合性分析

根据生态环境部 2021 年 8 月 4 日实施的关于加快解决当前挥发性有机物治理突出问题的通知,本项目与其符合性分析如下:

表 11.1-5 《关于加快解决当前挥发性有机物治理突出问题的通知》符合性分析汇总表

序	#\\\ \. \. \. \. \. \. \.	7Z 17 L+ V7	是否
号	整治要求	项目情况	符合
1	产生 VOCs 的生产环节优先采用密闭设备、在密闭空间中操作或采用全密闭集气罩收集方式,并保持负压运行。无尘等级要求车间需设置成正压的,宜建设内层正压、外层微负压的双层整体密闭收集空间。对采用局部收集方式的企业,距废气收集系统排风罩开口面最远处的 VOCs 无组织排放位置控制风速不低于 0.3m/s;推广以生产线或设备为单位设置隔间,收集风量应确保隔间废气保持微负压。当废气产生点较多、彼此距离较远时,在收集 满足设计规范、风压平衡的基础上,适当分设多套收设施 集系统或中继风机。废气收集系统的输送管道应密闭、无破损。工业涂装行业建设密闭喷漆房,对于大型构件(船舶、钢结构)实施分段涂装,废气进行收集治理;对于确需露天涂装的,应采用符合国家或地方标准要求的低(无) VOCs 含量涂料,或使用移动式废气收集治理设施。使用 VOCs 质量占比大于等于 10%的涂料、油墨、胶粘剂、稀释剂、清洗剂等物料存储、调配、转移、输送等环节应密闭。	项目底漆、取 保	符合
2	对生产系统和治理设施旁路进行系统评估,除保障安全生产必须保留的应急类旁路外,应采取彻底拆除、切断、物理隔离等方式取缔旁路(含生产车间、生产装置建设的直排管线等)。工业涂装、包装印刷等溶剂使用类行业生产车间原则上不设置应急旁路。对于确需保留的应急类旁路,企业应向当地生态环境部门报备,在非紧急情况下保持关闭并铅封,通过安装自动监测设备、流量计等方式加强监管,并保存历史记录,开启后应及时向当地生态环境部门报告,做好台账记录;阀门腐蚀、损坏后应及时更换,鼓励选用泄漏率小于0.5%的阀门;建设有中控系统的企业,鼓励在旁路设置感应式阀门,阀门开启状态、开度等信号接入中控系统,历史记录至少保存5年。在保证安全的前提下,鼓励对旁路废气进行处理,防止直排。	项目不设置 废气排放旁 路。	符合
3	有机 废气特征、VOCs组分及浓度、生产工况等,合理选择治理技术;对治理难度大、单一治理工艺难以稳定达标的,宜采用多种技术的组合工艺;除恶臭异味治理外,一般不使用低温等离子、光催化、光氧化等技术。加强运行维护管理,做到治理设施较生产设备"先启后停",在治理设施达到正常运行条件后方可启动生产设备,在	本项目油性 漆喷涂产生 的有机废气 经活性炭吸 附+活性炭脱 附催化燃烧 处理后高空	符合

生产设备停 止、残留 VOCs 废气收集处理完毕后,方 排放;水性漆 可停运治理设施:及时清理、更换吸附剂、吸收剂、催 喷涂产生的 化剂、蓄热体、过滤棉、灯管、电器元件 等治理设施 有机废气经 耗材,确保设施能够稳定高效运行;做好生产设备和治 水帘机/水喷 理设施启停机时间、检维修情况、治理设施耗材维护更 淋塔处理后 换、处置情 况等台账记录;对于 VOCs 治理设施产生 高空排放。企 的废过滤棉、废催化剂、废 吸附剂、废吸收剂、废有 业目常运行 机溶剂等,应及时清运,属于危险废物的 应交有资质 需添加足额 的单位处理处置。 的催化剂,并 采用催化燃烧工艺的企业应使用合格的催化剂并足额 控制燃烧参 添加,催 化剂床层的设计空速宜低于 40000h-1。采用 数,如速度、 非连续吸脱附治理工艺的,应按设计要求及时解吸吸附 温度等。 的 VOCs, 解吸气体应保证采用高效 处理工艺处理后 达标排放。蓄热式燃烧装置(RTO)燃烧温度一般不低 于 760℃,催化燃烧装置(CO)燃烧温度一般不低于 300℃,相关温度参数应自动记录存储。 有条件的工业园区和企业集群鼓励建设集中涂装中心, 分散吸 附、集中脱附模式的活性炭集中再生中心,溶 剂回收中心等涉 VOCs"绿岛"项目,实现 VOCs 集中高 效处理。 项目使用的 涂料均满足 《低挥发性 有机化合物 工业涂装、包装印刷、鞋革箱包制造、竹木制品、电子 含量涂料产 等重点行业要加大低(无) VOCs 含量原辅材料的源头 品技术要求》 替代力度,加强成熟技术替代品的应用。涂料、油墨、 (GB/T 胶粘剂、清洗剂等生产企业在产品出厂时应配有产品标 产品 38597-2020) 签,注明产品名称、使用领域、施工配比以及 VOCs 含 VOCs 要求。本次迁 符合 量等信息,提供载有详细技术信息的产品技术说明书或 含量 建项目环境 者产品安全数据表。含 VOCs 产品使用量大的国企、政 友好型涂料 府投资建设工程承建单位要自行或委托社会化检测机 约占涂料总 构进行抽检,鼓励其他企业主动委托社会化检测机构进 使用量的 行抽检。 80%, 可有效 从源头减少 VOCs 的产生 量。

由上表可知,本项目的建设与《关于加快解决当前挥发性有机物治理突出问题的通知》相关要求相符。

7、《浙江省工业企业恶臭异味管控技术指南(试行)》符合性分析。

表 11.1-6 《浙江省工业企业恶臭异味管控技术指南(试行)》符合性分析

内谷 當埋猎施要求 本坝目情况 符合性分析	内容	管理措施要求	本项目情况	符合性分析
-----------------------------	----	--------	-------	-------

原辅料替代	企业依据自身情况、行业特征、现 有技术,对涉异味的原辅材料开展 源头替代,采用低挥发性、异味影 响较低的物料,从源头上减少自身 异味排放。	本次迁建项目环境友 好型涂料约占涂料总 使用量的 80%,可有 效从源头减少 VOCs 的产生量,从源头上 减少自身异味排放。	符合
过程控制	企业优先对储存、运输、生产设施 等异味产生单元进行密闭,封闭不 必要的开口。由于生产工艺需求及 安全因素无法密闭的,可采用局部 集气措施,确保废气收集风量最小 化、处理效果最优化。有条件的企 业可通过废气循环化利用实现异味 气体"减风增浓"。对异味影响较 大的污水处理系统实施加盖或密闭 措施,使用合理的废气管网设计, 密闭区域实现微负压,确保异味气 体不外泄。	项目底漆、面漆、稀 释剂均采取密封存储 和密闭存放,对调漆、 上漆、晾干段废气进 行密闭收集,并配套 有效处理装置。可有 效减少异味排放。	符合
末端高效治理	企业实现异味气体"分质分类"治理。氨、硫化氢、酸雾等无机废气采用吸收等工艺处理,水溶性有机废气采用氧化吸收、吸附等工艺处理,非水溶性有机废气采用冷凝、吸附、燃烧等工艺处理,实现废气末端治理水平进一步提升。	本项目油性漆喷涂产 生的有机废气经活性 炭吸附+活性炭脱附 催化燃烧处理后高空 排放;水性漆喷涂产 生的有机废气经水帘 机/水喷淋塔处理后高空	符合
治理设施运行 管理	企业对废气治理设施进行有效的运行管理,定期检查设施工作状态,吸收类治理设施需定期更换循环液并添加药剂,吸附类治理设施需定期更换或再生吸附剂,燃烧类治理设施需设定有效的氧化温度和停留时间,确保设施运行效果。重点企业运用在线监测系统、视频监控等智慧化手段管理废气治理设施。	本项目油性漆喷涂产生的有机废气经活性炭吸附+活性炭脱附催化燃烧处理后高空排放;水性漆喷涂产生的有机废气经水帘机/水喷淋塔处理后高空排放。企业日常运行需添加足额的催化剂,并控制燃烧参数,如速度、温度等,确保设施运行效果。	符合
排气筒设置	企业合理设置异味气体排气筒的位置、高度等参数,降低异味对周边 区域影响	本项目排气筒高度设 置合理	符合
异味管理措施	企业设置专业环保管理人员,并建 立完善的环保管理制度,对产生异 味的重点环节加强管理,按照	企业将建立健全环保 管理制度,加强设备 的检查维护和维修,	符合

HJ944、HJ861 的要求建立台账。 并按照要求建立台账

根据上表分析可知,本项目符合《浙江省工业企业恶臭异味管控技术指南(试行)》要求。

11.1.3.3 公众参与要求的符合性

本次环评编制过程中,企业已按照《环境影响评价公众参与暂行办法》和《浙江省环境保护厅建设项目环境影响评价公众参与和政府信息公开工作的实施细则(试行)》的要求进行了公示公告和调查,综合公众调查结果表明,广大群众和企业对本企业及项目的建设还是比较关心支持的,公众参与工作期间未收到相关意见,本次公众参与工作过程符合相关文件要求,具有合法性、代表性、有效性和真实性,环评要求企业加强企群关系,做好以人为本,使企业的生存建立在民众生存的基础上。同时加强环境保护工作,落实本环评提出的各项污染物防治措施,确保各项污染物达标排放。因此,本次环评采纳公众参与调查的结论。

根据《环境影响评价技术导则一总纲》(HJ2.1-2016)的章节要求,公众参与章节不列入环评报告,由企业单独保管备查。

11.2 建设项目概况

浙江家家智能家居有限公司成立于 2010 年 9 月 14 日,主要从事智能家居的生产和销售。租用缙云县爱立特工贸有限公司位于缙云县新建镇洋山工业区 1号的闲置厂房生产,主要从事木质饰面板和木门等产品的生产和销售。目前企业生产规模为年产木饰面 10 万 m²、木门 2 万樘。

为了扩大市场占有率、提高企业竞争力,企业决定扩大生产规模。由于现有租赁厂房受限,企业于 2022 年 3 月通过国有建设用地使用权出让竞得缙云县新建 01-M2-01-2 地块(缙云县新建镇笕川村)的工业用地使用权,于竞得工业地块新建 1#厂房、2#厂房和综合楼,地块总用地面积 23114.7m²,总建筑面积50147.46m²,拟于该新建厂房内实施迁建项目,项目建成后,将形成年产 6000套智能定制家居的生产能力。

11.3 环境质量现状评价结论

11.3.1 环境空气质量现状结论

根据《2022年丽水市生态环境状况公报》,项目所在区域各污染因子 PM2.5、

PM₁₀、NO₂、SO₂、CO、O₃浓度均达到《环境空气质量标准》(GB3095-2012)中的二级标准,所在区域环境空气质量为达标区域;根据评价范围内现状监测资料,各监测点 TSP、二甲苯、非甲烷总烃监测数据可达到相应标准限值,环境质量现状良好。

11.3.2 水环境质量现状结论

根据《2022年缙云县环境质量公报》,项目附近河道 2021-2022年新建镇水源地、宅基断面水质均达到《地表水环境质量标准》(GB3838-2002)中的相应标准,水质现状满足对应的水功能区划的要求。

11.3.3 声环境质量现状结论

根据监测结果分析,项目厂界各测点昼间、夜间噪声监测值均低于《声环境质量标准》(GB3096-2008)中3类、4a类标准限值。

11.3.4 地下水环境质量现状结论

根据监测结果可知,各地下水监测值均可满足《地下水质量标准》 (GB/T14848-2017) III 类标准限值,项目地块地下水水质状况良好。

11.3.5 土壤环境质量现状结论

根据监测数据,本项目场地内、场地外各监测点位、各监测指标均低于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值标准限值,土壤环境现状质量良好。

11.4 项目"三废"产排情况汇总

本项目营运期间"三废"产生及排放情况详见表 11.4-1,本项目实施前后浙 江家家智能家居有限公司主要污染物排放量对照表见表 11.4-2。

名称	污染物名称	产生量	削减量	排放量
	废水量	17550	0	17550
慶 水	$\mathrm{COD}_{\mathrm{Cr}}$	10.726	10.199	0.527
凌小	NH ₃ -N	0.436	0.418	0.018
	SS	9.03	8.814	0.216
废气	颗粒物	64.408	36.91	11.57
及(乙酸酯类	3.361	2.723	0.638

表 11.4-1 项目污染物产生及排放汇总表

	苯系物	2.38	1.928	0.452
	非甲烷总烃	12.826	9.728	3.098
	TVOC	12.826	9.728	3.098
	食堂油烟	72kg/a	61.2kg/a	10.8kg/a
	边角料、木质粉尘	121.32	121.32	0
άЛ	废砂纸	1.4	1.4	0
一般 固废	废包装材料	1	1	0
四次	废布袋	0.2	0.2	0
	生活垃圾	120	120	0
	漆渣	43.425	43.425	0
	废包装桶	3.155	3.155	0
	收集的打磨、批灰粉尘	24.9	24.9	0
危险固废	污泥	6.375	6.375	0
	废活性炭	5	5	0
	废吸附棉	1.2	1.2	0
	废催化剂	2	2	0
	合计	86.055	86.055	0

表 11.4-2 本项目实施前后废气、废水对照表

污染物		现有工程排	拟建项目排	"以新带老"	本项目实施后	本项目实施前
	行来彻	放量	放量	削减量	总排放量	后增减量
废气	颗粒物(t/a)	0.107	11.57	0.107	11.57	+11.463
及し	TVOC (t/a)	1.224	3.098	1.224	3.098	+1.874
	废水量(m³/a)	918	17550	918	17550	+16632
废水	COD (t/a)	0.028	0.527	0.028	0.527	+0.499
NH ₃ -N (t/a)		0.001	0.018	0.001	0.018	+0.017
古	固体废物(t/a)		0	0	0	0

11.5 污染防治对策与措施总汇

本项目主要"三废"污染防治措施汇总见表 11.5-1。

表 11.5-1 污染治理措施一览表

时段	项目	环保措施
	废气	规范水泥拆包、混凝土搅拌的操作,粉性材料堆放在室内,减少粉尘影响。
	噪声	选用低噪声机械设备;禁止夜间进行产生噪声污染的施工,必要的夜间施
		工在施工前向当地环保部门申请审批,并公告周边居民及企业;加强施工管理。
施工	废水	加强用水管理,节约用水;施工人员如厕可借用厂区厕所,生活污水经化
期	及小	粪池处理达标后纳入市政污水管网,进入污水处理厂统一处理。
		生活垃圾集中、分类收集,由环卫部门统一清运,处置;对于建筑垃圾
	固废	应进行分拣,可以回收利用的部分应积极进行综合利用,不能利用的建筑垃
		圾送至城管部门指定的地点堆放,严禁随意运输,随意倾倒。

	废水	①厂区按照"清污分流、雨污分流、污污分流"原则实施设计; ②喷漆水帘机废水、水喷淋塔废水、批灰打磨除尘水帘机废水分质分类 收集后纳入厂区内污水处理设施处理,厂区内污水处理设施处理规模为 50m³/d, 采取"芬顿氧化+混凝沉淀+气浮"的处理工艺,经处理达到达到《污水综合排放标准》(GB8978-1996)中三级标准(其中氨氮、总磷排放参照 《工业企业废水氮、磷污染物间接排放限值》(DB33/887-2013)中标准限 值)后纳入市政污水管网进入缙云县第三污水处理厂处理; ③生活废水经化粪池/隔油池处理后纳管排放。
	废气	(1) 有机废气: ①1#厂房油性漆调漆、喷漆和晾干废气一起收集最终进入一套"干式过滤棉+活性炭吸附+活性炭脱附催化燃烧"(TA001)处理后由不低于 15m (DA001)高排气筒排放。②1#厂房水性漆调漆、喷漆、晾干废气一起收集最终进入两套"水帘机"(TA002、TA003)处理后由不低于 15m (DA002、DA003)高排气筒排放。③1#厂房辊涂机、淋涂机采用封闭式结构,除必要进出口外无其他开口,在辊涂机、淋涂机出口处设置集气罩,有机废气收集后最终进入一套"水喷淋塔"(TA004)处理后由不低于 15m (DA004)高排气筒排放。④2#厂房油性漆调漆、喷漆和晾干废气一起收集最终进入一套"干式过滤棉+活性炭吸附+活性炭脱附催化燃烧"(TA005)处理后由不低于 15m (DA005)高排气筒排放。⑤2#厂房水性漆调漆、喷漆、晾干废气一起收集最终进入两套"水帘机"(TA006、TA007)处理后由不低于 15m (DA006、DA007)高排气筒排放。⑥2#厂房辊涂机、淋涂机采用封闭式结构,除必要进出口外无其他开口,在辊涂机、淋涂机出口处设置集气罩,有机废气收集后最终进入一套"水喷淋塔"(TA008)处理后由不低于 15m (DA008)高排气筒排放。②2 木工粉尘:①针对木工粉尘本项目 1#厂房拟设置 2 套治理设施处理尾气由 2 根排气筒排放,即木工粉尘收集后经中央布袋除尘器(TA009、TA010)处理后经不低于 15m 排气筒(DA011、DA012)高空排放。(3)批灰、打磨粉尘:①针对批灰、打磨粉尘本项目 1#厂房拟设置 2 套治理设施处理尾气由 2 根排气筒排放,即木工粉尘收集后经中央布袋除尘器(TA011、TA012)处理后经不低于 15m 排气筒(DA011、DA012)高空排放。(3)批灰、打磨粉尘:①针对批灰、打磨粉尘本项目 1#厂房拟设置 2 套治理设施处理尾气由 2 根排气筒排放,即人工批灰、打磨由引风机收集后经水滤式除尘柜(TA013)处理后经布袋除尘器(TA014)处理后经不低于 15m 排气筒(DA014)高空排放。②针对批灰、打磨射气区和15)高空排放。机器打磨由吸风管道收集后经布袋除尘器(TA016)处理后经不低于 15m 排气筒(DA016)高空排放。《4)食堂油烟经油烟净化器处理后楼顶排放。
	噪声	合理布局;合理选型,选用低噪声设备;对于高噪声设备设置减振基础和安装消声器;加强管理,降低人为噪声;加强厂区绿化。
	固废	边角料、木质粉尘、废砂纸、废包装材料、废布袋收集后出售综合利用; 生活垃圾分类收集后委托环卫部门统一清运处置;漆渣、废包装桶、收集的

	打磨、批灰粉尘、污泥、废活性炭、废吸附棉及废催化剂等危险废物经收集
	后妥善贮存,最终委托专业资质单位处置。危废仓库位于厂区南侧,面积约
	$72m^2$.
	1#厂房、2#厂房、污水处理区、危废仓库等划分为一般防渗区;综合楼
地下	为简单防渗区;
水	按照"源头控制、末端防治、污染监控、应急响应"相结合的原则,从
	污染物的产生、入渗、扩散、应急响应全阶段进行控制。
风险	①围堰、防火堤、报警系统、消防器材等;②自动检测仪器、超限报警
防范	装置、可燃气体检测报警仪;③消防排水收集系统,包括收集池、管网、截
	断装置及排水监控系统; ④建立事故风险紧急监测系统, 特别是事故状况下
1月7世	应急措施;⑤应急池及其他,事故池容积 45m³。

11.6 环境影响评价主要结论

11.6.1 施工期环境影响评价结论

项目在施工期间产生的粉尘、噪声、废水等会对周围环境产生一定的影响,但只要施工单位严格执行本环评报告中所提出的污染防治对策,确保使污染物达标排放,同时加强管理,实行文明施工,由于项目施工期间时间较短,待施工结束影响就会消除,施工期环境影响还是可以接受的。

11.6.2 营运期环境影响评价结论

1、地表水环境影响评价结论

根据前述工程分析,本项目排放的废水有喷漆水帘机废水、水喷淋塔废水、 批灰打磨除尘水帘机废水和职工生活污水。喷漆水帘机废水、水喷淋塔废水、批 灰打磨除尘水帘机废水排放总量为 11550t/a,生活污水排放总量为 6000t/a。

根据建设单位提供的污水工程设计方案,污水处理工艺采用"芬顿+絮凝沉淀+气浮"的处理工艺,设计处理量为 50m³/d,废水经预处理后出水可达到《污水综合排放标准》(GB8978-1996)中三级标准后纳工业区污水管网,进入缙云县缙云县第三污水处理厂统一处理,对环境影响不大。

2、地下水环境影响评价结论

本项目运营期正常工况下排水不会直接对地下水环境造成影响,非正常工况下污水泄漏对浅层地下水的影响是缓慢的。但未经任何处理非正常工况下对地下水将造成一定影响。

由预测结果可知,在不采取防渗措施前提下,废水通过渗透作用可对地下水造成一定的影响,因此,企业需对主要污染部位如污水处理区、固废堆放场所等

采取防渗措施,确保污染物不进入地下水。

因此,建设单位应切实落实好废水集中收集预处理工作,做好废水和固废堆场的地面防渗工作,特别是污水处理设施构筑物的防沉降措施,对地下水环境影响较小。若废水发生非正常排放不会排到环境水体当中,本项目建有相应的事故废水收集暂存系统,及配套泵、管线,收集生产装置发生重大事故进行事故应急处理时产生的废水,对收集后的废水可委托污水处理厂处理或自行处理达标排放。因此也不会对地下水造成影响。

综上所述,只要做好适当的预防措施,本项目的建设对地下水环境影响较小。

3、大气环境影响评价结论

项目生产过程中主要废气有有机废气,工艺粉尘等。经分析,通过采取有效的大气污染防治措施后,正常情况下各废气污染物均能达到相应的排放标准限值。

根据预测,本项目废气排放最大地面浓度占标率 Pmax≥10%,大气环境评价工作等级为一级。10%<正常排放下污染物小时浓度、日均浓度、年均浓度贡献值的最大浓度占标率<100%。对于排放的污染物,保证率日平均质量浓度和年平均质量浓度均符合环境质量标准,对于小时平均浓度,叠加现状小时浓度值后符合环境质量标准要求。由此可见,项目建成后环境影响符合环境功能区划。项目在正常运行情况下,采取本环评报告提出的污染防治措施后,项目所排放的废气对周边大气环境可接受。

非正常排放情况及事故排放情况下对周围环境影响较大,应加强厂区生产设备的维护和管理,一旦检测到废气排放异常,应立即停产检修,杜绝废气的非正常或事故排放。

根据计算结果无超标点,本项目无需设置大气环境防护距离。

4、声环境影响评价结论

从预测结果可知,通过采取本环评报告提出的相关噪声防治措施,项目生产车间噪声对项目厂界东、西、北侧的噪声贡献值均达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类标准值,南侧达到4类标准值。因此,项目噪声达标排放对环境影响不大。

5、固体废弃物环境影响评价结论

根据分析,通过采取相关措施后,本项目产生的固体废弃物均可得到妥善处置,去向明确,处置方式合理,不会造成二次污染。

6、土壤评价结论

本次评价通过定量与定性相结合的办法,从大气沉降、地面漫流和垂直入渗 三个影响途径分析了项目运营对土壤环境的影响,根据分析结果,项目废气大气 沉降对土壤影响较小,同时在企业做好三级防控和分区防渗措施的情况下,地面 漫流和垂直入渗对土壤的影响较小。综上,项目运营期对土壤的影响较小。

7、环境风险评价结论

该建设项目存在一定潜在事故风险,只要建设单位加强风险管理,在项目建设、实施过程中认真落实各种风险防范措施,通过相应的技术手段降低风险发生概率,并在风险事故发生后,及时采取风险防范措施及应急预案,可以使风险事故对环境的危害得到有效控制,将事故风险控制在可以接受的范围内,因此,该项目事故风险水平是可以接受的。

11.7 主要建议

- 1、严格执行"三同时"制度,根据"三同时"要求,环保治理设施的设计、施工必须和主体建筑的设计、施工同步进行,竣工时能够同时投入使用。
- 2、贯彻执行评价中有关污染物排放总量控制方针,遵从清洁生产、达标排放原则,实施本评价提出的污染物总量控制目标,落实各项环境保护措施和建议。
- 3、严格按报批的生产范围、生产工艺和生产规模进行建设和生产。若需要 改变,按规定程序重新报批。
- 4、要求建设单位必须委托有资质单位进行环保设施设计和施工,确保环保设施稳定可靠。
- 5、加强环保设施的日常管理、维护,建立健全环保设施的运行管理制度、 定期检查制度、设备维护和检修制度,确保环保实施高效运行,尽量减少和避免 事故排放情况发生。

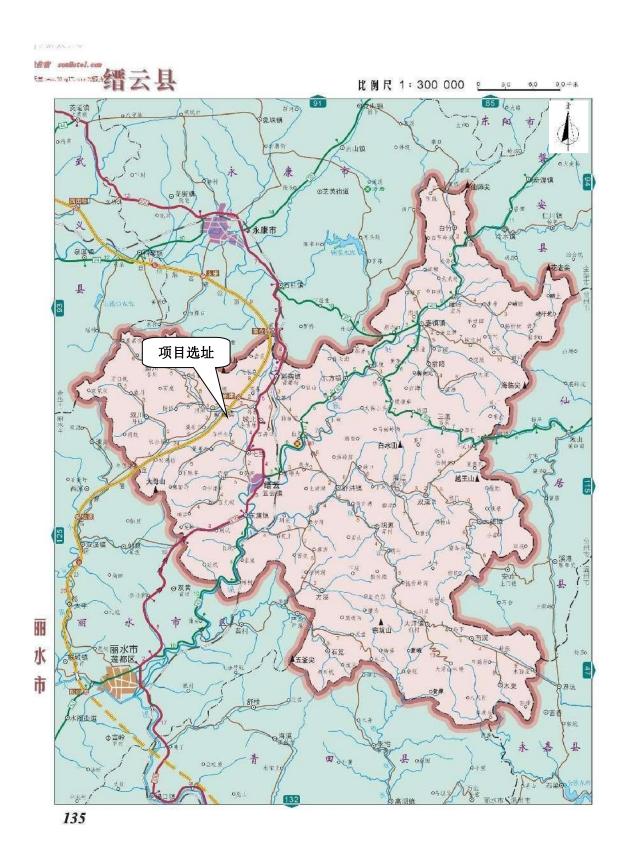
11.8 环评总结论

浙江家家智能家居有限公司年产 6000 套智能定制家居生产线项目选址位于 缙云县新建 01-M2-01-2 地块(缙云县新建镇笕川村),项目选址符合《缙云县"三线一单"生态环境分区管控方案》等相关规划要求,项目的实施符合相关

法律法规以及国家和地方产业政策的要求,只要建设单位认真落实本报告提出的各项合理可行的污染防治措施,切实做到"三同时",加强环境管理,做好环境污染防治工作,本项目营运过程中各污染物均能达标排放,项目建设可满足当地环境质量要求及总量控制要求;根据建设单位编制的公众参与说明,项目公众参与未收到相关意见及建议;因此,从环境保护角度看,该项目是可行的。

12 附图、附件

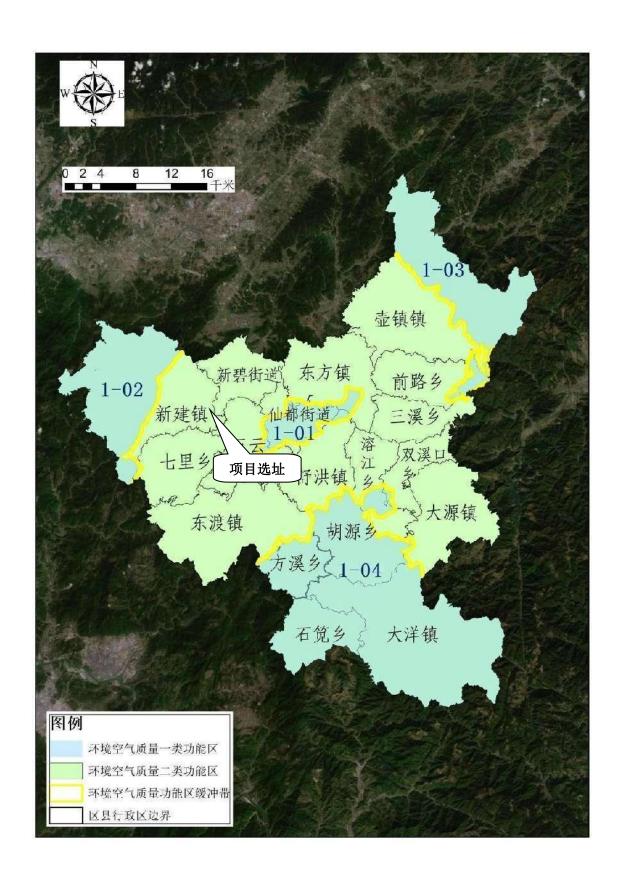
12.1 附图

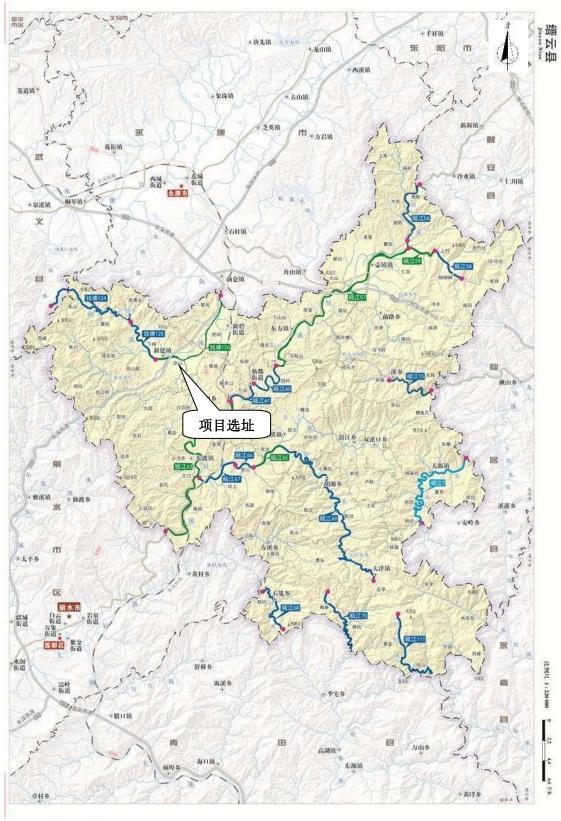

- 1、项目地理位置图
- 2、项目周围环境示意图
- 3、缙云县环境空气质量功能区划图
- 4、缙云县水环境功能区划图
- 5、缙云县生态红线图
- 6、缙云县环境管控单元分类图
- 7、厂区总平图
- 8、厂区雨污管网分布图
- 9、环保设施示意图

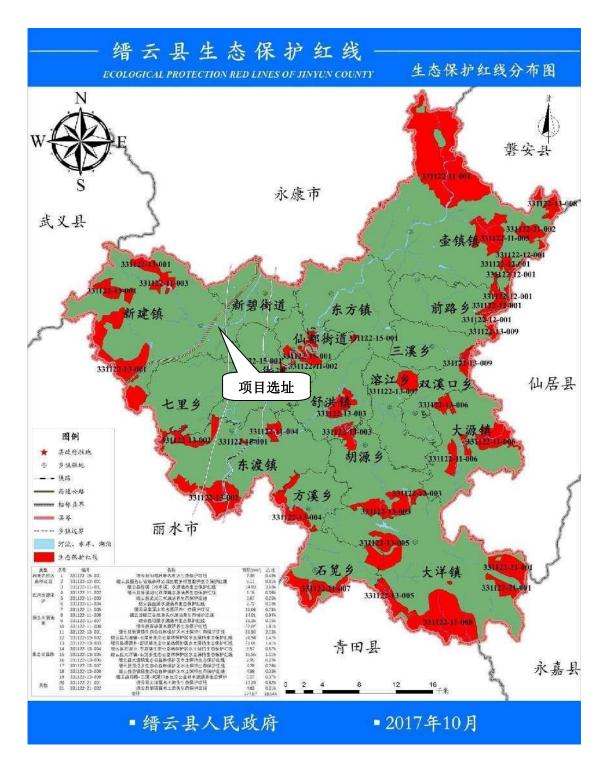
12.2 附件

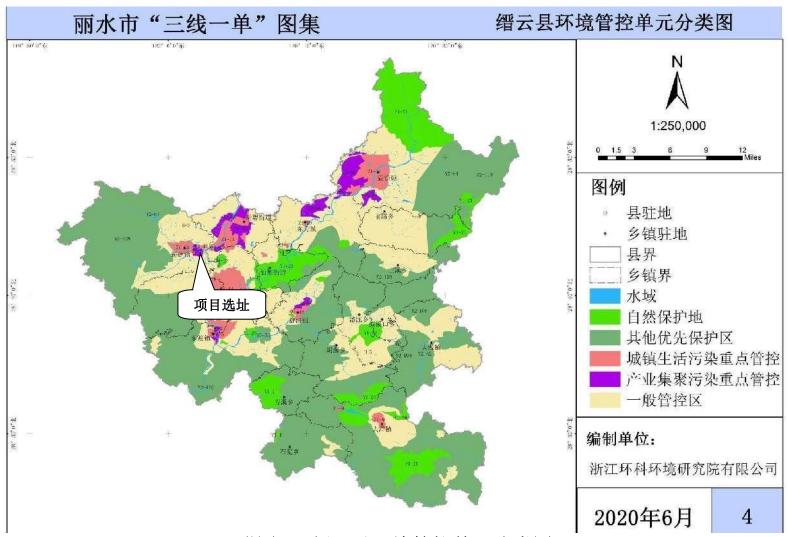
- 1、项目备案(赋码)信息表
- 2、营业执照
- 3、不动产权证
- 4、涂料等 MSDS 报告和检测报告
- 5、原有项目环评、验收、应急预案、排污许可相关文件
- 6、大气、地下水、声环境现状检测报告
- 7、土壤环境现状检测报告
- 8、废气处理技术方案(活性炭吸附+催化燃烧处理设备)
- 9、签到单和专家意见
- 10、专家意见修改清单

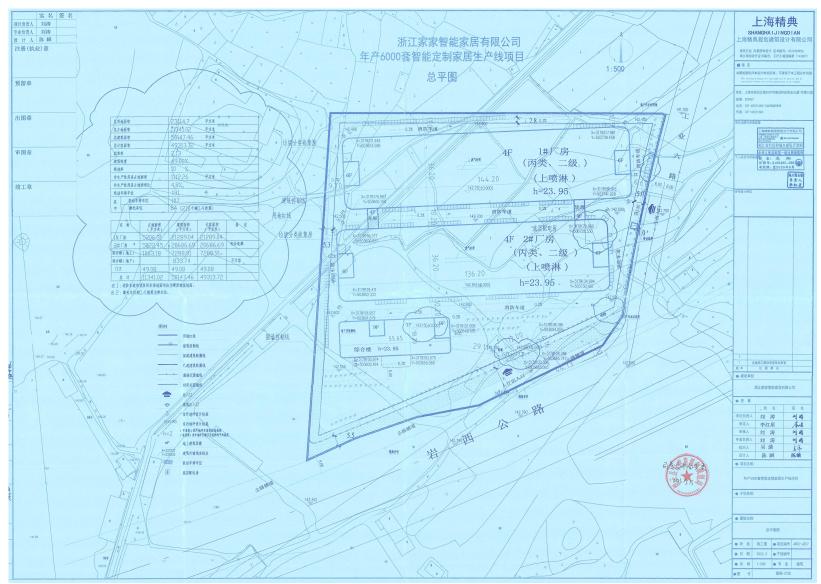
12.3 附表

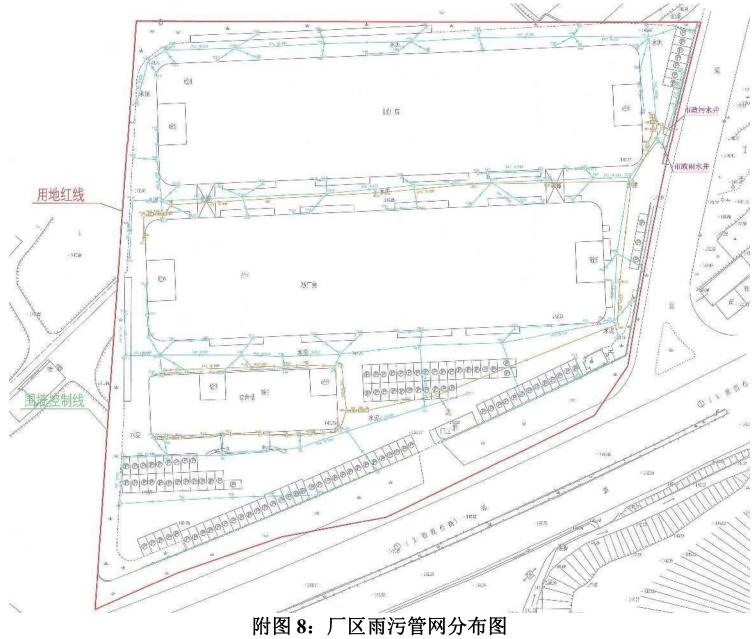

- 1、大气环境影响评价自查表
- 2、地表水环境影响评价自查表
- 3、土壤环境风险评价自查表
- 4、环境风险评价自查表
- 5、声环境影响评价自查表
- 6、建设项目环境影响报告书审批基础信息表

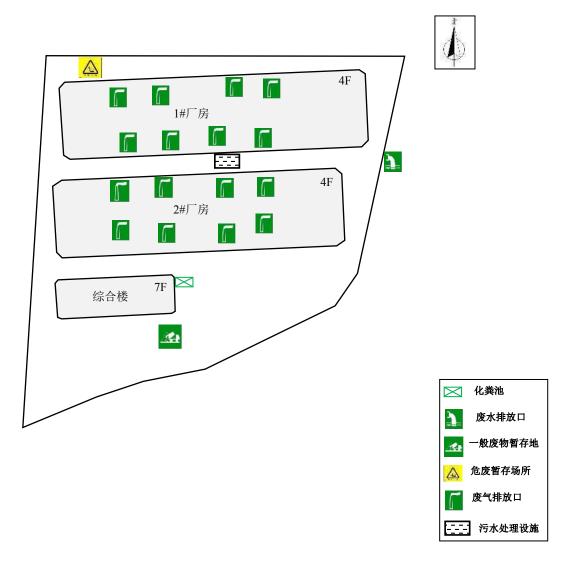

附图 1: 项目地理位置图


附图 2: 项目周围环境示意图


附图 3: 缙云县环境空气质量功能区划图


附图 4: 缙云县水环境功能区划图


附图 5: 缙云县生态红线图



附图 6: 缙云县环境管控单元分类图

附图 7: 厂区总平图

附图 9: 环保设施示意图

浙江省企业投資項目各案 (赋码) 信息表 备案机关: 缙云县经济商务局 (缙云县中小企业 备案日期: 2022年03月28日 局)

向)	MC10		The second	37.4				
22,00	项目	代码	2203-3311	22-07-02	-296379			
	项目	名称	年产6000	套智能定制	国家居生产	线项目	- 7/4	- SB\
万 项目类型			备案类(内資技术改造项目)					
79	建设	性质	扩建		建设	地点	浙江省丽县	水市缙云
	详细	地址	缙云县新	達01-M2-0	1-2地块(缙云县新	建镇笕川和	1)
	国标	行业	木质家具 (2110)	制造	所屬	行业	轻工	
	产业结构项	调整指导 目	除以上条	目外的轻二	드业	20		
项	拟开二	L时间	2022年04	A	拟建筑	支时间	2023年06	月
月日	是否零。	上地项目	否					
目基本情况		新增建设 地	是					
河光		增建设用	34. 67		土地出址	合同电子 音号		
	总用地面	STATE OF THE PARTY OF	34. 67	15 T.	- France A A A	面积 (平	49456, 62	
总建筑面积 (平方米)		49456.62		48622. 88				
	建设规模容(生)	与建设内 4能力)	、数面自包项 拉钻动装目 项目	工中心、李 中心() 中心() 中心() 一个() 一个() 一个() 一个() 一个() 一个() 一个() 一个	智能热压机 自动传输地机 全配套变电	、全线 、 根 横 消 筋 定 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	机琴自自供家自分析外的	L、数控 は注象数、自 を と を と を を を を を を を を を を を を を を を
	项目联系	系人姓名	周可坚	V (282)	项目联系	《人手机	13567091	578
	接收批文	邮寄地址	浙江省丽	水市缙云县	县新建镇洋	山工业小	区1号	
				总投资	(万元)	X	-	E8'
項	合计。	75 TO	固定投资各购置	查15000. 0	T 49 sh 15	to b th	建设期利息	铺底流动
项目投資情况	A CONTRACTOR OF THE PARTY OF THE PARTY.	上建工程 9000.000	费 4910.000	安装工程 90,0000	其他费用	顶骨页	12	1200, 000
黄精	00	0	0	資金来源	(万元)		加克	0
记	合计	财政性	生资金		(非财政	性資金》	银行贷款	其它
	16200.00 00	0. 0	0000	81	6200. 000	0	0.0000	0.0000
項	项目(法		浙江家家	智能家居	#USP	类型	企业	- KIN

	项目法人证照类型	统一社会信用代码	項目法人证照号码	9133112256236452 7A	
	单位地址	浙江省丽水市绪云 县新建镇洋山工业 小区1号	成立日期	2010年09月	
目	注册资金(万)	888, 880000	市种	人民币元	
目单位基本情况	经营范围	售; 支其制造; 收办集销 文其制造; 收办集销 支票 支票 支票 支票 支票 支票 支票 支	庭消费设备制造;制造;制造员用设备制造具为办法。 有用设备家具的设备家具的设备。 是一个工工,建筑是一个工工,是一个工工,是一个工工,是一个工工,是一个工工,是一个工工,是一个工工,是一个工工,是一个工工,是一个工工。 一个工工,是一个工工,是一个工工。 一个工工,是一个工工,是一个工工,是一个工工,是一个工工工工。 一个工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工	: 軟骨用模型人類 模型人類 表質 表質 表質 表質 表質 表質 表質 表型 表型 表型 表型 表型 表型 表型 表型 表型 表型	
	法定代表人	殊証券	法定代表人手机号码	15325121999	
項	登记软码日期	2022年03月28日			
	各業分期	2022年03月28日			
目变更情况	添1次变更日期	2022年03月29日	4	0	
兄	第2次变更日期	2022年04月27日	2. 18 35 PH		
項目单位声明	止投資建设的项目	5国家产业政策和准 发实行核准制管理的 页目各案信息的真实	项目。	WKONUTATION SERVICE	

证明:

7. 项目代码是项目整个建设周期唯一身份标识。项目申报、办理、审批、监管、延期、项目代码是各级政府有关部门企业,现代码是各级政府有关部门企业,现代码是各级政府有关部门企业,现代码是各级政府有关的企业,是一个企业,现在有效,现在是一个企业,现在是一个企业,是一个工

附件1:项目备案(赋码)信息表

统一社会信用代码

91331122562364527A (1/1)

营业执照

扫描二维码整录"国家企业信用信息公示系统"了解更多数 记、备案、许可、正 资信息

(副 本)

名

称 浙江家家智能家居有限公司

米

型 有限责任公司(自然人投资或控股)

法定代表人 陈丽芬

经营范围

一般项目:智能家庭消费设备制造;智能家庭消费设备销售; 文具制造,数学用模型及教具制造;数学用模型及教具销售; 文化、办公用设备制造,办公设备销售;人工智能行业应用系统集成服务;家具制造;家具安装和维修服务;家具零配件销售;家具零配件生产;家居用品制造;门窗制造加工;建筑装饰材料销售;地板制造;包装服务(除依法须经批准的项目外,凭营业执照依法自主开展经营活动)。许可项目:技术进出口(依法须经批准的项目,经相关部门批准后方可开展经营活动,具体经营项目以审批结果为准)。

CIDGL

注册资本 或仟万元整

成立日期 2010年09月14日

营业期限 2010年09月14日至长期

住 所 浙江省丽水市缙云县新建镇洋山工业小区 1 号

登记机关

SCIDGL

根据《中华人民共和国物权法》等法律 法规,为保护不动产权利人合法权益,对 不动产权利人申请登记的本证所列不动产 权利,经审查核实,准予登记,颁发此证。

中华人民共和国自然资源部监制 编号NOD 33201021936 22

斯江省振号。BDC331122120229020693744 缙云 不动产权第 0003266 号 浙 (2022) 附记 浙江家家智能家居有限公司 权利人 该宗地建设项目在 2022 年 9 月 27 日之前开工。在 2024 年 9 月 26 日 之前竣工、待建设项目竣工验收后及时办理不动产权变更登记。 单独所有 共有情况 增云县新建镇笕川村 331122102047GB00005W000000000 不动产单元号 序号 所在层 总层数 规划用途 建筑面积 权利类型 国有建设用地使用权 出让 权利性质 工业用地 逢 用 23114.70 m² 积 面 使用期限 国有建设用地使用权 2022 年 06 月 03 日起 2072 年 06月 02 权利其他状况

附件 3: 不动产权证

第一部分 化学品及企业标识

化学品中文名称 : 聚氨酯实色底漆

生产企业中文名称 : 上海君子兰新材料股份有限公司

地 址 : 上海市青浦区汇联路 1689 号

邮 编: 201708

传 真 : 86-21-31167662 技术说明书编码 : SDS20190314 生效日期 : 2019年3月1日 企业应急电话 : 021-31167666

第二部分 危险性概述

GHS 危险性分类:易燃液体,2类:皮肤腐蚀/刺激,2类:严重眼损伤/眼刺激 2A:致癌性, 2类

信号词 : 危险

危险性说明: H225 高度易燃液体和蒸汽: H315 造成皮肤刺激: H319 造成严重眼刺激: H351 怀疑会致癌。

防范说明:

预防:

- P210 远离热源/火花/热表面, 禁止吸烟。
- P223 保持容器密闭。
- P240 容器和接收设备接地/等电位连接。
- P241 使用防爆的电气/通风照明/设备。
- P242 只能使用不产生火花的工具。
- P243 采取防止静电放电的措施。
- P280 戴防护手套/穿防护服/戴防护服罩/待防护面具。
- P264 作业后彻底清洗身体接触部位。
- P201 在使用前获取特别指示。
- P202 在读懂所以安全防范措施之前切勿搬动。
- P281 使用所需的个人防护设备。

反应:

P303+P361+P353 如皮肤(头发)粘染:立即去除所有粘染的衣服。用水清洗皮肤/淋浴。

P370+P378 火灾时:使用泡沫、干粉、二氧化碳、砂土灭火器。

P321 具体治疗(见标签上的急救措施)。

P332+P313 如发生皮肤刺激: 求医/就诊。

P362 脱掉所有粘染的衣服,清洗后方可重新使用。

P305+P351+P338 如进入眼睛:用水小心冲洗几分钟。如戴隐形眼镜并可方便地取出。取出 隐形眼镜。继续冲洗。

P337+P313 如仍觉眼刺激: 求医/就诊

第 1 页 共 8 页

P308+P313 如接触到或有所疑虑: 求医/就诊

存储:

P403+P233 存放在通风良好的地方。保持容器密封。

P405 存放处需加锁。

处置:

P501 处置内装物/容器,按照相关国家法律法规标准。

事故响应:

迅速撤离泄露污染区,人员至安全区,并进行隔离,严格限制出入,切断火源。建议应急处理人员戴正压自给式呼吸器,穿防静电防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。若少量泄漏,可用惰性材料吸收。也可以用不燃性分散剂制成的乳液剔洗,洗液稀释后泡入废水系统。大量泄漏,则应构筑围堤或挖坑收容,泡沫覆盖,降低蒸汽危害,喷雾状水冷却和稀释蒸汽、保护现场人员。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

物理化学危险: 高度易燃,其蒸汽与空气可形成爆炸性混合物。遇明火高热极易燃烧爆炸。 与氧化剂能发生强烈反应。易产生和积集静电,有燃烧爆炸危险。其蒸汽比空 气重,能在较低处扩散到相当远的地方,遇明火会引起回燃。

环境危害:请参阅第十二部分

健康危害:对皮肤、粘膜有刺激性。

第三部分 成分组成信息

練品/混合物:混合物

Vario 940/94294427	a constant	- F W	
化学名称	CAS编号	成分	
醇酸树脂	63148-69-6	45-55%	
滑石粉	14807-96-6	15-20%	
钛白粉	13463-67-7	10-25%	
醋酸丁脂	123-86-4	3-5%	
聚乙烯蜡	9002-88-4	2-3%	

第四部分 急救措施

皮肤接触 : 脱去污染的衣物,用肥皂水和清水彻底冲洗皮肤。

眼睛接触 : 立即提起眼睑, 用大量流动清水或生理盐水彻底冲洗至少 15 分钟, 就医。

吸入:迅速脱离现场至空气新鲜处,保持呼吸道畅通。如呼吸困难,给输氧;如呼吸停止,立即进行人工呼吸,就医。

食 入: 饮足量温水, 催吐, 就医。

第五部分 消防措施

危险特征 : 遇明火、高热可燃。与氡化剂可发生反应;加热或燃烧时可分解生成有毒气体。起蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。若遇高热,容

第 2 页 共 8 页 01/03/2019

第一部分 化学品及企业标识

化学品中文名称: PU 亚光实色漆

生产企业中文名称 : 上海君子兰新材料股份有限公司

地 : 上海市青浦区汇联路 1689号

邮 编: 201708

传 真: 86-21-31167662 技术说明书编码: SDS20190316 生效日期: 2019年3月1日 企业应急电话: 021-31167666

第二部分 危险性概述

GHS 危险性分类:易燃液体,2类:皮肤腐蚀/刺激,2类:严重眼损伤/眼刺激 2A; 致癌性,2类

信号词 : 危险

危险性说明: H225 高度易燃液体和蒸汽; H315 造成皮肤刺激; H319 造成严重眼刺激; H351 怀疑会致癌。

防范说明:

预防:

P210 远离热潮/火花/热表面,禁止吸烟。

P223 保持容器密闭。

P240 容器和接收设备接地/等电位连接。

P241 使用防爆的电气/通风照明/设备。

P242 只能使用不产生火花的工具。

P243 采取防止静电放电的措施。

P280 戴防护手套/穿防护服/戴防护眼罩/待防护面具。

P264 作业后彻底清洗身体接触部位。

P201 在使用前获取特别指示。

P202 在读懂所以安全防范措施之前切勿搬动。

P281 使用所需的个人防护设备。

反应:

P303+P361+P353 如皮肤(头发)粘染:立即去除所有粘染的衣服。用水清洗皮肤/淋浴。 P370+P378 火灾时:使用泡沫、干粉、二氯化碳,砂土灭火器。

P321 具体治疗(见标签上的急救措施)。

P332+P313 如发生皮肤刺激: 求医/就诊。

P362 脱掉所有粘染的衣服,清洗后方可重新使用。

P305+P351+P338 如进入眼睛:用水小心冲洗几分钟。如戴隐形眼镜并可方便地取出,取出 隐形眼镜。继续冲洗。

P337+P313 如仍觉眼刺激: 求医/就诊

P308+P313 如接触到或有所疑虑: 求医/就诊

存储:

P403+P233 存放在通风良好的地方。保持容器密封。

P405 存放处需加锁。

处置:

P501 处置内装物/容器。按照相关国家法律法规标准。

重劫暗游。

迅速撤离泄露污染区,人员至安全区,并进行隔离,严格限制出入,切断火源。建议应急处理人员戴正压自给式呼吸器,穿防静电防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。若少量泄漏,可用惰性材料吸收。也可以用不燃性分散剂制成的乳液剔洗,洗液稀释后泡入废水系统。大量泄漏,则应构筑围堤或挖坑收容,泡沫覆盖,降低蒸汽危害,喷雾状水冷却和稀释蒸汽、保护现场人员。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

物理化学危险:高度易燃,其蒸汽与空气可形成爆炸性混合物。遇明火高热极易燃烧爆炸。 与氧化剂能发生强烈反应。易产生和积集静电,有燃烧爆炸危险。其蒸汽比空 气重,能在较低处扩散到相当远的地方,遇明火会引起回燃。

环境危害: 请参阅第十二部分

健康危害:对皮肤、粘膜有刺激性。

第三部分 成分组成信息

鈍品/混合物: 混合物

化学名称	CAS编号	成分	
醇酸树脂	63148-69-6	45-55%	
消光粉	575-61-1	0-10%	
钛白粉	13463-67-7	35-40%	
助剂	1	1-3%	
醋酸丁脂	123-86-4	5-7%	

第四部分 急救措施

皮肤接触: 脱去污染的衣物, 用肥皂水和清水彻底冲洗皮肤。

眼睛接触: 立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟,就医。

吸入:迅速脱离现场至空气新鲜处,保持呼吸道畅通。如呼吸困难,给输氧;如呼吸停止,立即进行人工呼吸,就医。

食 入: 饮足量温水、催吐、就医。

第五部分 消防措施

危险特征 : 遇明火、高热可燃。与氧化剂可发生反应;加热或燃烧时可分解生成有毒气体。起蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。若遇高热,容

第 2 页 共 8 页

第一部分 化学品及企业标识

化学品编号 : H-7603

化学品商品名称: PU净味慢干稀释剂

化学品英文名称: thinner

生产企业中文名称 : 上海君子兰新材料股份有限公司 生产企业英文名称 : Shanghai Clivia New Material Co., Ltd.

邮 编: 201708

传 真 : 86-21-31167662 生效日期 : 2023年5月1日 安全应急电话 : +86-0532-83889090

	第二部分 成分组	成信息	
纯品: 1		混合物 : ✓	
化学名称	CAS编号	成分	
丙二醇甲醚醋酸脂	108-65-6	45-55%	
醋酸丁酯	123-86-4	10-20%	
二甲苯	1330-20-7	30-40%	

第三部分 危险性概述

危险性类别:第3.2 类中闪点易燃液体 侵入途径:吸入、食入、经皮肤吸收。

健康危害 : 对眼睛及上呼吸道均有强烈的刺激作用。有麻醉作用。吸入高浓度本品会出现

流泪、咽痛、咳嗽、胸闷、气短等症状,严重者出现心血管和神经的症状。可 引起结膜炎、角膜炎、角膜上皮有空泡形成。液体对皮肤有刺激作用,引起皮

炎。长期低浓度接触、呼吸功能可受到影响。

环境危害: 请参阅第十二部分

燃爆危险:本品可燃,有毒,具刺激性。

第四部分 急救措施

皮肤接触: 脱去污染的衣物, 用肥皂水和清水彻底冲洗皮肤。

眼睛接触: 立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟,就医。 吸 入:迅速脱离现场至空气新鲜处,保持呼吸道畅通。如呼吸困难,给输氧:如呼吸

第 1 页 共 5 页 01/05/2023

01/03/2020

化学品技术安全说明书 (SDS)

第一部分 化学品及企业标识

化学品中文名称: 聚氨酯固化剂

生产企业中文名称 : 上海君子兰新材料股份有限公司

地 : 上海市青浦区汇联路 1689 号

邮 编:201708

传 真 : 86-21-31167662 技术说明书编码 : SDS20170307 生效日期 : 2020年3月1日 企业应急电话 : 86-021-31167666

第二部分 危险性概述

GHS 危险性分类:易燃液体,2类:皮肤腐蚀/刺激,2类;严重眼损伤/眼刺激 2A:致癌性,2类

信号词 : 危险

危险性说明: H225 高度易燃液体和蒸汽: H315 造成皮肤刺激: H319 造成严重眼刺激: H351 怀疑会致癌。

防范说明:

预防:

P210 远离热源/火花/热表面,禁止吸烟。

P223 保持容器密闭。

P240 容器和接收设备接地/等电位连接。

P241 使用防爆的电气/通风照明/设备。

P242 只能使用不产生火花的工具。

P243 采取防止静电放电的措施。

P280 藏防护手套/穿防护服/藏防护服罩/特防护面具。

P264 作业后彻底清洗身体接触部位。

P201 在使用前获取特别指示。

P202 在读懂所以安全防范措施之前切勿搬动。

P281 使用所需的个人防护设备。

反应:

P303+P361+P353 如皮肤(头发)粘染: 立即去除所有粘染的衣服。用水清洗皮肤/淋浴。

P370+P378 火灾时: 使用泡沫、干粉、二氧化碳, 砂土灭火器。

P321 具体治疗(见标签上的急救措施)。

P332+P313 如发生皮肤刺激: 求医/就诊。

P362 脱掉所有粘染的衣服,清洗后方可重新使用。

P305+P351+P338 如进入眼睛:用水小心冲洗几分钟。如戴隐形眼镜并可方便地取出,取出 隐形眼镜。继续冲洗。

P337+P313 如仍觉眼刺激: 求医/就诊

第1页共7页

P308+P313 如接触到或有所疑虑: 求医/就诊

存储:

P403+P233 存放在通风良好的地方。保持容器密封。

P405 存放处需加领。

处置:

P501 处置内装物/容器,按照相关国家法律法规标准。

事故响应:

迅速撤离泄露污染区,人员至安全区,并进行隔离,严格限制出入,切断火源。建议应急处理人员截正压自给式呼吸器,穿防静电防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。若少量泄漏,可用惰性材料吸收。也可以用不燃性分散剂制成的乳液剔洗,洗液稀释后泡入废水系统。大量泄漏,则应构筑围堤或挖坑收容,泡沫覆盖,降低蒸汽危害。喷雾状水冷却和稀释蒸汽、保护现场人员。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

物理化学危险;高度易燃,其蒸汽与空气可形成爆炸性混合物。遇明火高热极易燃烧爆炸。 与氧化剂能发生强烈反应。易产生和积集静电,有燃烧爆炸危险。其蒸汽比空

气重,能在较低处扩散到相当远的地方,遇明火会引起回燃。

环境危害: 请参阅第十二部分

健康危害:对皮肤、粘膜有刺激性。

第三部分 成分组成信息

纯品/混合物:混合物

化学名称	CAS编号	浓度或浓度范围(%)
聚甲苯二异氰酸酯	/	65-70
TDI	584-84-9	0.1-0.5
醋酸丁酯	123-86-4	30-35

第四部分 急救措施

皮肤接触: 脱去污染的衣物, 用肥皂水和清水彻底冲洗皮肤。

腿睛接触: 立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟,就医。

吸 入:迅速脱离现场至空气新鲜处,保持呼吸道畅通。如呼吸困难,给输氯;如呼吸

停止,立即进行人工呼吸,就医。

食 入 : 饮足量温水, 催吐, 就医。

第五部分 消防措施

危险特征 : 週明火、高热可燃。与氧化剂可发生反应;加热或燃烧时可分解生成有毒气体。起蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。若遇高热,容器内压力增大,有开裂和爆炸的危险。

有害燃烧产物 : 一氧化碳、二氧化碳、氧化氮、氰化氯。

第 2 页 共 7 页 01/03/2020

化学品安全技术说明书 > 君子兰漆

Issue date: 3/2/2021

一·产品及制造商信息

1.1 产品信息

产品名称: 水性双组份透明底漆

供应商编号:

商品名称: 水性双组份透明底漆

产品用途: 木器

1.2 公司信息

制造商: 上海君子兰新材料股份有限公司 上海市青浦区汇联路 1689 号

电话号码: 86-021-31167666 传真号码: 86-021-31167684

1.3 联络资料

联络人: 马强华 (技术经理)

易延安 (客户服务经理)

繁急联络号码: 86-021-62679090

二. 成份辨识资料

主要组成的物质(化学全称)	CAS 编号	合量(%, W/W)
水性丙烯酸乳液	9003-01-4	75-85%
水合硅酸镁	14807-96-6	<5%
水	N/A	10-15%
二丙二醇丁醚	29911-28-2	<5%
改性二甲基聚硅氧烷溶液	9016-00-6	<5%
2 氨基-2-甲基-1-丙醇溶液	124-68-5	<5%
杀菌剂	2634-33-5	<5%

产品编号:水性双组份透明底漆

Page 1/5

Issue date: 6/28/2023

一·产品及制造商信息

1.1 产品信息

产品名称: 水性固化剂 供应商编号: H-622B 商品名称: 水性固化剂

产品用途: 木器

1.2 公司信息

制造商: 上海君子兰新材料股份有限公司 上海市青浦区汇联路 1689号

电话号码: 86-021-31167666 传真号码: 86-021-31167684 紧急联络号码: 86-021-62679090

二. 成份辩识资料

组成物质(化学全称)	CAS 稿号	含量 (%, W/W)
六亚甲基二异氰酸酯	822-06-0	70~90%
丙二醇甲醚醋酸酯	108-65-6	10-30%

三·物理及化学特性

物理状态: 液体

蒙色: 无色 气味: 无味

PH 值:不可测

相对蒸气密度(空气=1): 无数据

蒸气压:约12百帕在20℃ 沸点/沸程: 300℃ (水)

产品编号: H-622B 水性固化剂

Page 1/6

检测报告

TEST REPORT

样品名称:

水性双组份透明底漆

Sample Description

尹子 藺

商标/型号: Brand Model

OR MARKO SANCTOR

上海君子兰新材料股份有限公司

委托单位: Applicant

检测类别:

委托检验

位初失为 Test Type

广东产品质量监督检验研究院

国家涂料产品接壓超飛過測中心(广东)

HINA HATIONAL QUALITYTESTING AND INAMEDION MINTER FOR PAINTINGS AND DOPES IGLIANGIOONG

检测报告(Test Report)

共3页第1页

样品名称	A late over the late of the late of	生产ITMI Manufactured Date			
Sangle Description	木性双出份透明底律	生产批号 Sarial No.			
Elly, ES Brand, Model	君子廟	42.47.05.93 Vinscher No.	C2300338		
受检单位 Impected Entity		检测类别 Test Type	委托检验		
を托車位 Applicass	上海对子兰斯材料股份有限公司	打 法 数 址 Sample Quantry	2ke		
生产年位 Manufaction	上海君子兰新材料股份有限公司	前杆基数 Sampling Base			
計(平達点) Sampling Place		校科日別 Sampling Date	2023年01月11日		
抽样単位 Sampling Entity	1	發送日期 Tested Date	2023年02月21日		
科基特证和状态 Sample Character and St	ne Schi	完好			
检测技器 Testing reference	死的 集 30	死的鬼鬼			
阿定依据	GB 18581-2020 (木器涂料中	有事物质限量》(水性涂料	清排)		
Judgmeni seference	GB/T 23999-2009 (室内装饰量	GB/T 23999-2009 (室內裝饰放修用水性木器涂料) (D类)			

检测结论 (Test Conclusion):

本次委托检验共检13项、所检项目全部符合标准的要求。

条注 Remarks 1. 组分配比: 主剂:衍化剂C-02B:水-100;10;10(抵量比);

2. 而标信息由委托单位提供。

批准: Approved by

检测报告(Test Report)

用 3 页 页 至 页

序号	检测印	m	经预告机	判定情报 要求	卵 铅	检测结果	力进 检查器	HE
21 18	581-2020 《本提注》	中有害物质混	K3					
1	1003	- 1	GB/T 23986-2009 GB 18581-2020	€300	e/t	33	.2	0.0
2	9863	111	68/T 23993-2009	€100	ng/kg	未整出	5	0 H
3	乙二醇醛及醚酯总和含聚(報乙二 醇甲醛、乙二醇甲醛酯酸酯、乙二 醇乙醚、乙二醇乙醛酯酸酯、乙二 醇二甲醛、乙二醇二乙醛、二乙二 醇二甲醛、三乙二醇二甲醛)		GB/T 22986-2009	<300	me/ke	未检出	80	合相
4	A STATE OF THE PARTY OF THE PAR	苯系物总和含量[限苯、甲苯、二 甲苯(含乙苯)]		×C250	war ka	未检出	50.	合格
5	授基而果氧乙烯醇总和含量[限章 基酚型氧乙烯醇 (0PJD) 和王基 酚果氧乙烯醇 (MP,EO), n·2~16]		GB/T 31414-2015	<1000	mg/kg	未检试	5	ON
GB/T	23999-2009 (至時報	1年装作用水性木	(2818月)					
		主形	GB/T 23999-2009	批拌后均 匀无硬块		符合		0 H
I.	在容器中状态	M代表的	GB/T 23999-2009	搅拌后均 匀无硫块		符合		合材
2	hers	į.	GB/T 1724-2019	<60	p m	30	-	合格
3	不得为	ENY	GB/T 1725-2007	≥30	8	36, 5		会相
		表于	GB/T 1728-1979	≤60	min	60 (己干)		合料
200	1-99 BT bill		GB/T 1728-1979	≤24	h:	24 (己于)		合相
4	干燥时间	实于						
4 5	此存稳定性(G0	生刑 生刑	GLT 23999-2009	光射市	-	符音	-	û)

广东省韩山市顺德区大良新城区德维东路1号

Tel: 0757-22808888

Fax: 0757-22802600

Issue date: 12/22/2020

一一产品及制造商信息

1.1 产品信息

产品名称: 水性双组份透明面漆

供应商编号:

商品名称: 水性双组份透明面漆

产品用途: 木器

1.2 公司信息

制造商: 上海君子兰新材料股份有限公司 地址: 上海市青浦区汇联路 1689 号

电话号码: 86-021-31167666 传真号码: 86-021-31167684

1.3 联络资料

联络人: 马强华 (技术经理)

易延安 (客户服务经理)

紧急联络号码: 86-021-62679090

二. 成份辩识资料

主要组成的物质 (化学全称)	CAS 編号	含量 (%, W/W)
水性丙烯酸乳液	9003-01-4	70-85%
气相二氧化硅	7631-86-9	<5%
二丙二醇丁醚	29911-28-2	<5%
改性二甲基聚硅氧烷溶液	9016-00-6	<5%
2 氨基-2-甲基-1-丙醇溶液	124-68-5	<5%
杀菌剂	2634-33-5	<5%
*	N/A	10-20%

产品编号:水性双组份透明面漆

Page 1/5

No.: ST2300679

检测报告

TEST REPORT

样品名称: Sample Description 水性双组份哑光透明面漆

商标/型号:

君子蘭

Brand (Model

上海君子兰新材料股份有限公司

委托单位:

检测类别:

Tinit Type

委托检验

广东产品质量监督检验研究院

国家深料产品质影描数幅测由流(广东)

声 明 DECLARATION

1. 报告无"检验检测专用章"无效。

The test report is invalid without the official stamp of the testing institute.

2. 报告无主检、审核、批准人签章无效。

The test report is invalid without the signatures or stamps of the testing, reviewed and approved persons.

3. 报告涂改无效。

The test report is invalid if scribbled or altered.

 复制报告未重新加盖检验检测专用印章或检验机构公章无效, 不得擅自修改或不合理、不规范、不合法使用报告。

Any photocopy of the test report is invalid without adding the official stamp of the testing institute. Any modification, improper, illegal use of the test report is prohibited.

- 5. 委托方/受检方如对检验检测结果有异议,请在收到报告之日起十五日内书面提出,否则视为认可检验检测结果(有特别规定除外)。
 Any dispute of the test result must be raised to the testing institute within 15 days after receiving, otherwise it is taken as no objection (except otherwise stipulated).
- 6. 委托检验检测仅对来样负责。

by the client).

The result of the commission test is only corresponding to the sample(s).

7. 不得利用检验检测结果和报告进行不当或速法宣传。

The test result and test report shall not be used as improper or illegal propaganda.

- 8. 可登录广东质检院官网客户服务平台(https://kefu.gqi.org.cn)或扫描报告二维码,查询报告有关信息(委托方/受检方不同意公开的报告信息除外)。 Information of the test report can be checked on the GQI official website: https://kefu.gqi.org.cn or scan report QR code. (except those not allowed
- 9. 若报告无 CMA 标识章、则仅作为科研、教学或内部质量控制之用。 If the test report is without CMA logo, it shall be only used for scientific research, teaching or internal quality control.

No.: ST2300679

检测报告(Test Report)

其工作第二页

样品名称	A M WALKS IN A WALKS IN	12 /= ELIVI Manufactured Date			
Sample Description	本性双组份曜光透明而漆	生产担约 5erial No			
Mis. 5217 Band, Model	君子 爤	収存事等 Youther No.	C2306338		
受检单位 Impested Entity		检测类别 Test Type	委托检验		
委托单位 Applicant	上海君子兰新材料股份有限公司	FF 25 SZ III Sample Quantity	2lat		
生产单位 Manufactures	上海君子兰新材料股份有限公司	抽样基数 Sampling Base			
抽针地点 Sampling Place		收付日期 Sompling Date	2023年01月11日		
抽样单位 Sampling Entity		H2 (2, F) JUJ Tested Date	2023年02月21日		
井品特証和状态 Sample Character and Sta	ne FEMF	70.84			
检测体据 Testing reference	见结果页。				
再定依据 Judgment reference		GB 18581-2020 (木器涂料中有害物质限量)(水性涂料 清漆) GB/T 23999-2009 (室内装饰装修用水性木器涂料》(8类)			

检测结论 (Test Conclusion):

本次委托检验共检22项。其中允详(60°)为实测值。其余所检项目全部符合标准的要求。

以及機能专用章 Output testing deam of the firstbase 2023年0月11日 夏印报告未准高年在小龙游台董春理景,无文

No copy of this report is valid without offerful red state of discount body

答注 Remarks L. 组分配比: 主剂: 固化剂C-02B: 水-100:10:10(植量比);

2. 高标信息由委托单位提供。

批准: Approved by

湖海流

申核: F 元-1/2

主始: 何級祥 Tisted by

No.: ST2300679

检测报告(Test Report)

序号	19363	Ш	拉测位据	判定依据 夏求	単位	62.001A.3E	おは、 検出型	用定
all p	(581-2020) (木器涂料	中有有物物原理	E)				10.11170	
1	VIC含	Ni.	GB/T 23986-2009 GB 18581-2020	< 300	p/5.	40	2	介格
2	甲醛含	N.	GB/T 23993-2009	≤100	ng/kg	未校出	5	合併
3	乙二醇酰及醋酯总和含量(聚乙二 醇甲酰、乙二醇甲醛酰胺酯、乙二 醇乙酰、乙二醇乙醛酯酸酯、乙二 醇二甲醛、乙二醇二乙醛。二乙二 醇二甲醛。三乙二醇二甲醛)		GI/T 23986-2009	≤300	ne ke	未检出	80	合格
4	苯系物总和含量[梨茶、甲苯、二 甲基(含乙苯)]		GE/T 23990-2009 BEE	≤250	ne/ke	未控出	50	合格
5	烷基酚聚氧乙烯醛总和含量[限辛 基酚聚氧乙烯醛 (PLIO) 和王華 酚聚氧乙烯醛 (NPLIO), n=2-16]		GB/T 31414-2015	≤1000	mic/kie	非绘出	5	合格
act	23999-2009 (定身装	饰装排用水性木	器涂料)					
1	在容易中状态	走和	GB/T 23999-2009	推拌后均 匀无硬块		符合	-	合核
1	11. 19 48 11 47 40	网化剂	GB/T 23999-2009	使秤后均 匀无硬块		符介		合物
2	me		GB/T 1724-2019	1≤35	H-10	30		合格
3	不得发	th	GB/T 1725-2007	≥30	8	35, 7		合格
	17 Minary	表于	GB/T 1728-1979	\$#I0	min	60(世生)	_	合格
3.	子操时间	女干	GB/T 1728-1979	≤24	h	24(己干)		介权
5	贮存稳定性	主相	GR/T 23999-2009	无好事		符合		会报
7	[(50±2)U/7d]	IM 38:701	GB/T 23999-2009	无异常	-	符合		命机

广东省使山市职德区大良新城区德胜东路1号 Tel: 0757-22808888

Fax: 0757-22802600

MATERIAL SAFETY DATA SHEET 物质安全技术说明书

产品名称: C-444 UV 辊涂超级白底漆

Page 1of 4 制定日期:2022-3-11

1. 产品及企业标识

化学类别

: 环氧丙烯酸酯与聚氨酯丙烯酸酯共聚物

生产厂家

: 上海君子兰新材料股份有限公司

上海市青浦区汇联路 1689号

安全应急电话

+ +86-0532-83889090

2. 成分/组成信息

主要成分(化学全称)	CAS 编号	含量(%, W/W)
环氧丙烯酸酯	71281-65-7	10-25%
聚氨酯丙烯酸酯	9009-54-5	0-20%
1,6-己二醇二丙烯酸酯	13048-33-4	5-20%
三羟甲基丙烷三丙烯酸酯	15625-89-5	0-10%
2, 4, 6-三甲基苯甲酰基-二苯基氧化膦	75980-60-8	0.5-1%
2-羟基-2-甲基-1-苯基丙酮	7473-98-5	3-5%
钛白粉	52624-13-2	35-50%
滑石粉	14807-96-6	0-15%

3. 危险性标识

此产品的健康危害评估是基于对其组成成分的考察.它可能对眼睛及皮肤有刺激性。

4. 急救措施

吸 入 : 将病人移离现场,注意保暖和静养。如果症状出现,应寻求医护。 皮肤接触 : 用肥皂水清洗后在用清水清洗皮肤,如果症状出现,应寻求医护。 眼睛接触 : 将眼睑分开,用洗眼液或清水冲洗至少 10 分钟。如果症状出现,应 寻求医护。

食 入 : 用水清洗口腔。如果症状出现, 应寻求医护。

进一步医疗处理 : 症状治疗配以必要的辅助治疗。

5. 消防措施

本产品不被列为易燃物,如果有火灾发生,它可能会放出有毒气体。

灭火介质 : 泡沫,二氧化碳,干粉,喷水

忌用 : 未知 特殊接触危害 : 未知

保护工具 : 防毒面具

特别防火措施 : 用水来冷却密封容器,以防止压力集增。

中国认可 国际互认 检测 TESTING CNAS L0153

检测报告

TEST REPORT

样品名称: Sample Description UV辊涂白底漆

商标/型号: Brand/Model 君子蘭

委托单位:

上海君子兰新材料股份有限公司

检测类别:

委托检验

Test Type

「东产品港量監督加强研究院 GUANGDONG TESTING WISTITU A OF PRINT UCT QUALITY SUPERVISION 国家涂料产品建量監理和测中点(广东) 力村と

检测报告(Test Report)

共3页第1页

样品名称	10/April 3 Service	生产日期 Manufactured Date		
Sample Description	UV組涂白底漆	生产生5号 Secial No.		
商标、似号 Brand, Model	君子 爤	校样单号 Voucher No.	C2300339	
受給单位 Inspected Entity		检测类别 Test Type	委托检验	
委托单位 Applicant	上海君子兰新材料股份有限公司	作品数量 Sample Quantity	2kg	
生产单位 Manufacturer	上海君子兰新材料股份有限公司	抽样基数 Sampling Base		
抽样地点 Sampling Place		收拌日期 Sampling Date	2023年01月11日	
抽样单位 Sampling Entity	205	验达日期 Tested Date	2023年03月13日	
样品特征和状态 Sample Character and Stat	e Schi			
检测依据 Testing reference	见结果页-			
列定採机 Judgment reference		GB 18581-2020 (本器涂料中有害物质限量》(辐射固化涂料 非水性) HG/T 3655-2012 (紫外光 (UV) 固化本器涂料)(適用底漆)		

检测结论 (Test Conclusion):

本次委托检验共位15项。所检项目全部符合标准的要求。

海遊戲調专用章 Opjest testing composition discounte A 2023年第3月13日

复印报告未重编证的 海经产出民董章 无效 No copy of this report is valid without original pod spinop of a sting body

备注 Remarks 1. 固化能量: 300~500mJ/cm, 固化时间: 30s;

2. 商标信息由委托单位提供:

3. 重金属分析仪器: Perkin Elmer Avio 500 电磁耦合等离子体发射光谱仪。

批准: Approved by 胡鸡

申核: F 不

主检: 何級裤

Tested by

检测报告(Test Report)

共3页第2页

							4 3 91 9	
序号	檢測项目		檢調依据	判定依据 要求	単位	1520 計場	方法 价出限	判定
GB 18	581-2020 《本器涂料	[中有害物质限]	(0)					
1	Voc 会	in.	GB/T 34675-2017	≤420	в/1.	33	5	合格
2	意僧(Pb) (限色漆、賦子)		GB/T 30647-2014	≤90	ng/kg	未拉出	2	合格
	DENVISOR A DEA	错(Cd)含量	GB/T 23991-2009	≤75	mg/kg	未梳出	0, 5	合格
3	可溶性业金属含 量(限色漆、賦子	路(Cr)含量	6B/T-23991-2009	≤60	ng/kg	未拉出	1	A18
	和發展請請)	汞(Hg)含量	GB/T 23991-2009	≤60	mg/kg	未验出	T	合格
4	乙二醇醛及醚酯总和含量(限乙二醇甲醚、乙二醇甲醚、乙二醇甲醚醋酸酯、乙二醇乙醚醋酸酯、乙二醇二乙醚、二乙二醇二甲醚、三乙二醇二甲醚)		68/T 23986-2009	≤300	nat kit	未检出	80	合物
5	茶含1	it	GB/T 23990-2009	≤0,1	76	未検出	0, 001	合格
6	甲苯与二甲苯(含)	5.苯)总和含量	GB/T 23990-2009	≤5	56	0.050	0, 005	合格
7	多环芳烃总和含量	(限禁。憩)	GE/T 36488-2018	≤200	mg/kg	未脸出	0, 2	合格
8	甲醇含量		GB/T 23986-2009	≤0, 3	5	未捡出	0, 005	計合
9	南代烃总和含量(限二氮甲烷,三 氮甲烷,四氮化碳,1,1-二氯乙烷 、1,2-二氯乙烷,1,1,1-三氮 乙烷,1,1,2-三氯乙烷,1,2- 二氮丙烷,1,2,3-三氯丙烷,三 氯乙烯。四氯乙烯)		GB/T 23992-2009	≤0.1	S.	未検出	0, 01	合格

广东省佛山市顺德区大良新城区德胜东路1号

Tel: 0757-22808888

Fax: 0757-22802600

UV 辊涂底漆 MSDS 报告和检测报告

附件 4: 涂料等 MSDS 报告和检测报告

一種「松」

丽水市生态环境局文件

丽环建缙〔2021〕39号

关于浙江家家智能家居有限公司年产10万平方智能定制家居木饰面板项目环境影响报告表的 审查意见

浙江家家智能家居有限公司:

你公司报送的《关于要求对年产10万平方智能定制家居木饰面板项目环境影响报告表进行审批的函》及其它相关材料收悉。 根据《中华人民共和国环境影响评价法》等相关环保法律法规, 经研究,现将我局审查意见函告如下:

一、根据你公司委托浙江环昌科技有限公司编制的《浙江家家智能家居有限公司年产 10 万平方智能定制家居木饰面板项目环境影响报告表》(以下简称《环评报告表》)、项目备案通知书(项目代码 2020-331122-21-03-116824)、技术评估报告(浙环科

咨[2021]51号)等材料,以及本项目环评行政许可公示意见反馈 情况,在项目符合产业政策、选址符合区域土地利用等相关规划 的前提下,原则同意《环评报告表》提出的结论。

- 二、该项目选址位于浙江省丽水市缙云县新建镇洋山工业区 1号,购置数控加工中心、UV自动滚涂线、UV自动淋涂线、UV自 动侧涂线、全自动封边机、雕刻机等设备,项目投产后形年产10 万平方智能定制家居木饰面板的生产能力。项目总投资 662 万元。
- 三、在项目建设和运营中,你公司应严格执行有关环境质量 和污染物排放标准,落实各项环保措施,确保污染物达标排放及 各环境敏感点满足相应的环境功能区要求。重点做好以下工作:
- 1、加强废水污染防治。实施清污分流、雨污分流。生活污水 经化粪池预处理达到《污水综合排放标准》(GB8978-1996)中的 三级标准(其中氨氮、总磷排放执行《工业企业废水氮、磷污染 物间接排放限值》(DB33/887-2013)中标准限值)后纳入市政污 水管网,进入缙云县第三污水处理厂处理后排入新建溪。污水排 放口与清下水排放口必须按规范化设计、建设。
- 2、加强废气污染防治。提高装备配置和密闭化、连续化、自动化、管道化水平,从源头减少废气的无组织排放。根据各工艺

废气特点采取针对性的处理措施,优化废气收集预处理和排气筒设置方案,强化分类收集和分质处理措施,提高各类工艺废气的收集和处理效率,确保治污效率。各工段产生的颗粒物和 VOCs 废气排放执行《工业涂装工序大气污染物排放标准》(DB33/2146-2018)中的相应标准。

- 3、加强噪声污染防治。营运期采取各项噪声污染防治措施,确保厂界噪声执行《工业企业厂界环境噪声排放标准》 (GB12348-2008)中的3类标准。
- 4、加强固废污染防治。按照"资源化、减量化、无害化" 处置原则,建立台账制度,规范设置废物暂存库,危险废物和一般固废分类收集、堆放、分质处置,尽可能实现资源的综合利用。项目危险废物贮存须满足 GB18597-2001 及其标准修改单(环保部公告2013年第36号)等要求。项目产生的危险废物,委托有资质单位妥善处置,并须按照有关规定办理危险废物转移报批手续,严格执行危险废物转移联单制度。严禁委托无危险货物运输资质的单位运输危险废物,严禁委托无相应危废处理资质的个人和单位处置危险废物,严禁非法排、放、倾倒、处置危险废物。一般固废的贮存和处置须符合 GB18599-2020 等相关要求,并按国家有关固废处置的技术规定、确保处置过程不对环境造成二次污染。

5、加强厂区地面防渗措施,本项目污水处理设施、原料仓库、 生产车间、一般固废堆存区及危废暂存库等区域严格落实防渗漏 措施,切实加强土壤和地下水的污染防治。

四、加强环境风险防范与应急。项目投运前,应完成突发环境事件应急预案的修编和备案。在发生或者可能发生突发环境事件时,应当立即采取措施处理,及时向相关部门报告,确保周边环境安全。完善应急物资的建设与储备,加强突发环境污染事故应急演练,杜绝各类环境风险事故的发生。

五、同意环评提出的总量平衡方案。本项目仅排放厂内独立 区域生活污水,COD_{Cr}、NH₃-N 可不进行区域替代削减;颗粒物、 VOCs 排放量在已核定排放量控制范围。

六、建立健全项目信息公开机制,按照环保部《建设项目环境影响评价信息公开机制》(环发〔2015〕162号)等要求,及时、如实向社会公开项目开工前、施工过程中、建成后全过程信息,并主动接受社会监督。

七、根据《环评法》等的规定,若项目的性质、规模、地点、 采用的生产工艺或者防治污染、防止生态破坏的措施发生重大变 动的,应依法重新报批项目环评文件。自批准之日起超过5年方 决定该项目开工建设的, 其环评文件应当报我局重新审核。

以上意见和《环评报告表》中提出的污染防治措施和风险防范措施,你公司应在项目设计、建设、运营和管理中认真予以落实。须严格执行环保"三同时"制度,项目竣工后,应当按照规定的标准和程序,对该项目配套建设的环境保护设施进行验收,编制验收报告,并依法向社会公开验收报告(除按照国家规定需要保密的情形外)。建设项目经验收合格后,方可正式投入生产。

(此件公开发布)

投票品源

抄送:新建镇,行政服务中心,经济商务局,县生态环境综合执法队 丽水市生态环境局缙云分局办公室 2021年11月3日印发

浙江家家智能家居有限公司

年产10万平方智能定制家居木饰面板项目竣工环境保护验收意见

2022年4月10日浙江家家智能家居有限公司根据(浙江家家智能家居有限公司年产10万平方智能定制家居木饰面板项目竣工环境保护验收监测报告表)。 并对照(建设项目竣工环境保护验收暂行办法),严格依照国家有关法律法规、建设项目竣工环境保护验收技术规范、本项目环境影响报告等要求对本项目进行验收。建设单位相关人员组成验收小组。本次验收小组结合(验收监测报告表)等资料及环境保护设施现场检查情况。提出该项目验收意见如下:

- 一、工程建设基本情况
- (一) 建设地点、规模、主要建设内容
- 1、建设单位:浙江家家智能家居有限公司
- 2、建设地点: 缙云县新建镇洋山工业区1号
- 3、建设规模: 年产10万平方智能定制家居木饰面板
- 4、建设内容:浙江家家智能家居有限公司成立于2010年9月,地址位于缙云县新建镇洋山工业区1号,租用缙云县爱立特工贸有限公司现有闲置厂房生产,主要从事木质饰面板和木门等产品生产和出售。目前公司已有5条水性漆喷涂线、1条PU漆喷涂线和2条普通UV辊涂线,实际生产规模为年产5万平方米木质饰面板及2万樘木门。

根据市场调查需求,公司拟购置数控加工中心、UV自动液涂线、UV自动淋涂线、UV自动侧涂线、全自动封边机、雕刻机等设备,打造智能数字化工厂模式。本项目实施将落实设备提升,淘汰原有2条普通UV辊涂线,新增2条UV自动化涂装线,同时增加1条水性溶自动化涂装线,如此,木质饰面板产能新增年产5万平方米。项目建成后,公司拥有年产10万平方米木质饰面板及2万樘木门的生产规模。

(二) 建设过程及环保审批情况

企业于2018年委托中环联新(北京)环境保护有限公司编制了(浙江家家木 业有限公司年产5万平方米木质饰面板及2万樘木门整治提升技改项目现状环境影 响评估报告)。根据环保局出具的关于(浙江家家木业有限公司年产5万平方米 木质饰面板及2万樘木门整治提升技改项目现状环境影响评估报告)审核意见。

1

现状评价报告一并作为现有项目的验收报告进行分析,最终项目现状环评和验收于2018年9月一并通过环保备案 (编号: 2018-008); 2021年企业委托浙江环昌科技有限公司编制了 (浙江京京智能家居有限公司年产10万平方智能定制家居木饰面板项目环境影响报告表)。同年取得面水市环境保护局缙云分局出具的环评批复 (面环建缙 (2021) 39号)。

企业于2021年12月1日完成了浙江家家智能家居有限公司固定污染源排污许可变更登记,并取得固定污染源排污许可登记回执(编号:91331122751917848D001Y)。

(三)投资情况

本项目总投资665万元, 其中环保费用合计约80万元, 占总投资的12.0%。

(四) 验收范围

验收范围为"年产10万平方智能定制家居木饰面板项目"整体验收。

二、工程变动情况

根据现场踏勘和验收监测报告,相比环评阶段,原辅材料略有增减。增加比例不超过10%,没有发生重大变动。

三、环境保护设施建设情况

(一) 废水

生活污水经化粪池预处理后达到(污水综合棒放标准)(GB8978-1996) 中三级标准(其中氨氮排放执行(工业企业废水氮、磷污染物间接排放限值》 (DB33/887-2013)中标准限值),纳入市政污水管网,最终排入缙云县第二污水处理厂处理;生产废水每月排入污水处理站处理除漆渣,后循环利用,每年更换一次,作为危险固废委托丽水市民康医疗废物处理有限公司安全处置。

(二) 废气

木工加工粉尘:粉尘经收集通过布袋除尘器处理后由15m排气筒排放 (DA001);上胶废气(VOCs),喷涂、晾干废气(VOCs)、UV涂装废气:PU漆 废气集气罩收集后先通过水帘吸附漆雾,再经过缓冲精密过滤箱+水喷淋+UV光 解+活性炭吸附)处理后通过15m排气筒排放(DA002),水性漆废气集气罩收集, 滤棉除漆雾后进入缓冲精密过滤箱+水喷淋+UV光解+活性炭吸附处理后通过15m 持气简排放 (DA002), 上胶废气和UV涂装废气、晾干废气: 经过收集后也通过 缓冲精密过滤箱+水喷淋+UV光解+活性炭吸附) 处理后通过 15m 排气筒排放 (DA002)。

(三)噪声

- (1) 合理布置设备位置, 将高噪音设备尽量布置在车间中间。
- (2) 生产时车间门窗保持关闭。
- (3)建设单位应加强设备日常检修和维护,以保证各设备正常运转,以免由于设备故障原因产生较大噪声。
 - (4) 加强生产管理,教育员工文明生产,减少人为因素造成的噪声。

(四) 固废

本项目废包装袋/箱、边角料、回收的粉尘、废水品、废砂纸经收集后外卖相 关废品收购站;废包装桶、乳化液;委托浙江黑猫环境科技有限公司处理;漆渣、 废胶水桶、废过滤棉、废活性炭、喷淋废水;委托丽水市民康医疗废物处理有限公司委托处理;漆渣委托兰溪自立环保科技有限公司处理;生活垃圾经厂区内集中收 集后由当地环卫部门统一清运处置。

四、环境保护设施调试结果

浙江环正环境检测科技有限公司对该项目进行了环境保护验收检测。检测报告编号为浙江环正-S-202203015、浙江环正-Q-202203007、浙江环正-Z-202203006。验收监测期间,项目主体工程工况稳定,环境保护设施运行正常,各类环境保护设施的监测结果如下:

(二) 污染物达标排放情况

1、废水

监测结果表明: 监测期间,本项目生活污水总排放口废水pH值范围为7.2~7.4, CODCr排放浓度为120~146mg/L,日均值分别均为133mg/L、142mg/L;;BOD5排放浓度为45.4~54.5mg/L,日均值均为49.7mg/L、50.4mg/L,氨集排放浓度为17.3~21.1mg/L,日均值均为18.7mg/L和20.0mg/L,悬浮物排放浓度为79~153mg/L,日均值分别为127mg/L、122mg/L,总磷排放浓度为2.67~3.31mg/L,日均值分别为2.91mg/L、3.14mg/L,石油类排放浓度为2.34~3.57mg/L,日均值分别为3.20mg/L、2.75mg/L。各 项指标均满足 (污水综合排放标准) (GB8978-1996) 三级标准,其中NH3-N、总磷多 照执行浙江省地方标准 (工业企业废水复、磷污染物间接排放限值) (DB33/887-2013)。

2、废气

監測結果显示: 厂界无组织废气中颗粒物最大浓度值为0.067mg/m³ (标准限值: 1.0mg/m³), 因此厂界无组织颗粒物浓度满足 (大气污染物综合排放标准) (GB16297-1996) 中相应标准。非甲烷总烃最大浓度值为0.46mg/m³, 二甲苯最大浓度为<0.0015mg/m³, 乙酸乙酯最大浓度为<0.05mg/m³, 乙酸丁酯最大浓度为<0.005mg/m³, 乙酸丁酯最大浓度为<0.005mg/m³, 类气最大浓度为<10mg/m³。因此厂界非甲烷总烃、二甲苯、乙酸乙酯、乙酸丁酯、夹气浓度消足 (工业涂装工序大气污染物排放标准) (DB33/2146-2018) 中表6无组织排放标准限值。

厂内无组织废气中非甲烷总烃最大浓度值为4.53mg/m³(标准限值: 20.0mg/m³)。因此厂内非甲烷总烃浓度满足(挥发性有机物无组织排放控制标准) (GB37822-2019) 附录A中表A.1规定的特别排放限值。

木加工粉尘颗粒物排放浓度平均值约4.3mg/m³,平均排放速率约8.5454×10°kg/h, 处理效率为91.2%; 满足《工业涂装工序大气污染物排放标准》 (DB33/2146-2018) 中表2大气污染物特别排放限值。

全厂有机废气颗粒物排放浓度平均值约5.1mg/m³, 平均排放速率约0.127kg/h, 处理效率为95.5%; 非甲烷总烃排放浓度平均值约为31.05mg/m³, 平均排放速率约 0.774kg/h, 处理效率为55.4%; 二甲苯平均排放浓度为5.27mg/m³, 平均排放速率 约0.132kg/h, 处理效率为59.7%; 乙酸丁酯排放浓度平均值约为0.109mg/m³, 平均 排放速率约2.715×10³kg/h, 处理效率为61.4%; 乙酸乙酯排放浓度平均值约为 1.198mg/m³, 平均排放速率约2.96×10²kg/h, 处理效率为36.8%; 臭气排放浓度平 均值约为314.5mg/m³, 处理效率为48.4%, 满足《工业涂装工序大气污染物排放标 准》(DB33/2146-2018) 中表2大气污染物特别排放限值。

3、噪声

監測結果表明:本項目厂界昼间噪声均满足《工业企业厂界环境噪声排放标准》 (GB12348-2008) 中3类。

4、总量

(1) 废水总量指标核算

经调查,本项目仅生活废水产生,产生的CODer排环境量为0.334/a, 氨氨排环 境量为0.054/a。生活污水经化类池预处理后达到《污水综合排放标准》(GB8978-1996)中三级标准(其中氨氨排放执行《工业企业废水氨、磷污染物间接排放限值》 (DB33/887-2013)中标准限值),纳入市政污水管网,最终排入缙云县第二污水 处理厂处理,故不计入总量核算

(2) 废气总量指标核算

经监测结果分析可知,全厂有机废气中非甲烷总烃特放速率约0.774kg/h,全厂中全年非甲烷总烃排放量=排放速率0.774kg/h×运作时间2000h=1.548t; 则本项目全厂VOCS排放量为1.548t/a, VOCS符合环评中总量控制要求 (VOCS: 1.816t/a)。

五、工程建设对环境的影响

本项目已基本按照环评及批复的要求落实了各项环保设施。验收监测结果均 符合相关标准。对周边环境的影响控制在环评要求以内。

六、验收结论

依据《建设项目竣工环境保护验收暂行办法》,浙江家家智能家居有限公司 年产10万平方智能定制家居木饰面板项目环保手续齐全,根据《验收监测报告表》 等资料及环境保护设施现场检查情况,企业已基本落实各项环境保护设施,不存在 《建设项目竣工环境保护验收暂行办法》第八条中所列验收不合格的情形。

验收工作组认为。新江家家智能家居有限公司年产10万平方智能定制家居木 饰面板项目基本符合竣工环境保护验收条件。原则同意通过竣工环境保护验收。

七、后续要求

- 1、按验收技术规范要求,完善验收监测报告。
- 2、建立健全环保管理規章制度,落实专人负责环保管理,强化环保设施运行维护管理,规范各类环保台账和各类环保处理设施操作规程,确保各项污染物达标排放。
- 3、进一步加强各类废气收集和处理,提高有机废气和粉尘的收集率。确保 各类废气达标排放。
 - 4、定期开展应急演练,配备完善的环境风险防范物资,提高防范突发环境

事件的应急能力。

八、验收人员

见附件"浙江京家智能家居有限公司年产10万平方智能定制家居木饰面板项目竣工环境保护设施验收人员名单"。

浙江家家智能家居有限公司 二〇二二年四月十日

浙江家家智能家居年产 10 万平方智能定制家居木饰面板项 目环保设施竣工验收人员名单

2022年 岁月 /9日

	M.S	外技	化活	99599
於領 人責人	神经	湖北安安格用如县		
	talafoski Assar	·加州城村城村	1716708354	३३०७४६१९७७८१६१६१६१६१६१
왍	大大	和市的境种学学生		3325496/01110015
收入		Consideration of the Constant		
A				
			-	

企业事业单位突发环境事件应急预案备案表

备案意见	浙江家家智能家居有F 25日收讫,经形式审查,		急预案备案文件已十 2022 年 05 月 公司 公司 公司 公司 公司 公司 公司 公司 公司 公司 公司 公司 公司
备案编号	321400-2022-012-L		
受理部门 负责人	丁進徐	经办人	黄河凯

注:备案编号由企业所在地县级行政区划代码、年份、流水号、企业环境风险级别(一般及较小 L、较大 M、重大 H)及跨区域(T)表征字母组成。例如,浙江省杭州市余杭区**重大环境风险非跨区域企业环境应急预案 2015 年备案,是余杭区环境保护局当年受理的第 25 个备案,则编号为: 330110-2015-025-HT,

排污许可证

证书编号: 91331122562364527A001Q

单位名称: 浙江家家智能家居有限公司

注册地址: 缙云县新建镇洋山工业区1号

法定代表人: 陈丽芬

生产经营场所地址: 缙云县新建镇洋山工业区1号

行业类别: 木质家具制造

统一社会信用代码: 91331122562364527A

有效期限: 自 2023 年 04 月 18 日至 2028 年 04 月 17 日止

发证机关: (盖章) 丽水市生态环境局

发证日期: 2023年 04月 03日

排污许可证(副本)

中华人民共和国生态环境部監制

丽水市生态环境局印制

附件 5: 原有项目环评、验收、应急预案、排污许可相关文件

齐鑫第 K23090002 号

检测报告

> 浙江齐鑫环境检测有限公司 Zhe Jiang Union Testing Co. Ltd.

- 4

声明

- 1.本报告无批准人签名,或未加盖本单位检验检测专用章及其骑缝章均无效。
- 2.本报告全部或部分复制、私自转让、盗用、冒用、涂改或以其他任何形式篡改的均属无效,本单位将对上述行为追究其相应的法律责任。
- 3.委托方对送检样品的代表性和资料的真实性负责,否则本单位不承担任何相关责任。
- 4.委托方若对本报告有异议,请于收到报告之日起十五个工作日内向本单位提出。
- 5.除非特别声明,本单位有权在完成报告后处理所测样品。
- 6.本单位保证工作的客观公正性,对委托单位的商业信息、技术文件等商业秘密履行保密义务。

地 址: 浙江省丽水市莲都区南明山街道绿源路7号6幢1号

电 话: 0578-2303512

传 真: 0578-2303507

邮 编: 323000

电子邮箱: zjuniontesting@163.com

项目名称: 浙江家家智能家居有限公司环境现状监测

委托单位:丽水市环科环保咨询有限公司

委托单位地址: 浙江省丽水市莲都区南明山街道绿源路7号6幢1号5楼

受检单位: 浙江家家智能家居有限公司

联系人: 陈苏文

采样日期: 2023年9月11日~18日

报告编号: K23090002

联系人方式: 13757836638

检测日期: 2023年9月11日~20日

一. 检测项目、检测方法和主要仪器

	检测项目	方法和主要仪器 检测方法	主要仪器	
类别		水质 pH 值的测定 电极法 HJ 1147-2020	PHBJ-260F 便携式 pH 计	
	pH 值	八版 pit lett3007C -	GHP-9050 隔水式恒温培养箱	
	总大肠菌群	生活饮用水标准检验方法 微生物指标 GB/T 5750.12-2006	LRH-70F 生化培养箱	
	细菌总数	(七月) 4月 (七月)	Uvmini-1280 紫外可见分光光度计	
	氨氮	水质 氨氮的测定 纳氏试剂分光光度法 HJ 535-2009	AP125WD 分析电子天平	
	溶解性总固体	生活饮用水标准检验方法 感官性状和物理指标 GB/T 5750.4-2006		
	总硬度	水质 钙和镁总量的测定 EDTA 滴定法 GB/T 7477-1987	25mL 棕色酸碱通用滴定管	
	耗氧量	生活饮用水标准检验方法 感官性状和物理指标 GB/T 5750.4-2006	25mL 棕色酸碱通用滴定管	
	氟化物		CIC-D100 离子色谱仪	
	氯化物	水质 无机阴离子(F、Cl、NO ₂ 、Br、NO ₃ 、PO ₄ ³ 、SO ₃ ² 、SO ₄ ²)		
	硫酸盐	的测定 离子色谱法 HJ 84-2016		
地下水	硝酸盐氮			
	亚硝酸盐氮	水质 亚硝酸盐氮的测定 分光光度法 GB/T 7493-1987	722N 分光光度计	
	挥发酚	水质 挥发酚的测定 4-氨基安替比林分光光度法 HJ 503-2009		
	氰化物	水质 氰化物的测定 容量法和分光光度法 HJ 484-2009		
	砷	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014	吉天 8220 原子荧光分光光度计	
	汞		Uvmini-1280 紫外可见分光光度	
	六价铬	水质 六价铬的测定 二苯碳酰二肼分光光度法 GB/T 7467-1987	Uvmini-1280 紫外可见为无边及机	
	铅	石墨炉原子吸收法《水和废水监测分析方法》(第四版增补版)国	AAS-6800FG 原子吸收分光光度	
	镉	家环境保护总局(2002 年)		
	铁	水质 铁、锰的测定 火焰原子吸收分光光度法 GB/T 11911-1989		
	锰	水质 铁、锰的测定 火焰原子吸收分光光度法 GB/T 11911-1989		

类别	检测项目	检测方法	主要仪器	
地下水 -	钾	水质 钾和钠的测定 火焰原子吸收分光光度法 GB/T 11904-1989		
	钠	AND VITALISTON	AAS-6800FG 原子吸收分光光度计	
	钙	水质 钙和镁的测定 原子吸收分光光度法 GB/T 11905-1989		
	镁			
	碳酸盐	酸碱指示剂滴定法《水和废水监测分析方法》(第四版增补版)国	25mL 棕色酸碱通用滴定管	
	重碳酸盐	家环境保护总局(2002年)	and the standard Market	
	石油类	水质 石油类的测定 紫外分光光度法 (试行) HJ 970-2018	Uvmini-1280 紫外可见分光光度计	
	二甲苯	水质 苯系物的测定 顶空/气相色谱法 HJ 1067-2019	Agilent 6890N 气相色谱仪	
无组织废 气	颗粒物	环境空气 总悬浮颗粒物的测定 重量法 HJ 1263-2022	AP125WD 分析电子天平	
	非甲烷总烃	环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法 HJ 604-2017	GC2018 气相色谱仪	
	二甲苯	环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸-气相色谱法 HJ 584-2010	GC-2010-PRO AF 岛津气相色谱仪	
噪声	区域环境噪声	声环境质量标准 GB 3096-2008	AWA6228 多功能声级计	

二. 检测结果

地下水

采样日期		9月11日		
	W1	W2	W3	
检测点位		11:54	12:14	
采样时间	11:38		无色清液	
样品性状	无色清液	无色清液		
pH 值(无量纲)	7.6	7.7	7.5	
总大肠菌群(MPN/100mL)	<2	<2	<2	
	93	95	82	
细菌总数 (CFU/100mL)	0.057	0.046	0.074	
氨氮(mg/L)	0.037		124	
溶解性总固体 (mg/L)	111	120	11.9	
总硬度(mg/L)	13.5	9.2		
高锰酸盐指数(mg/L)	1.0	1.3	1.3	
	25.6	34.4	28.6	
氯化物(mg/L)	0.156	0.232	0.284	
氟化物(mg/L)			8.53	
硫酸盐 (mg/L)	27.3	0.622		

采样日期	9月11日		
	W1	W2	W3
检测点位	11:38	11:54	12:14
采样时间		无色清液	无色清液
样品性状	无色清液		3.71
硝酸盐氮(mg/L)	1.90	5.08	<0.0003
E硝酸盐氮(mg/L)	< 0.0003	<0.0003	
挥发酚 (mg/L)	<0.0003	<0.0003	<0.0003
	<0.004	<0.004	<0.004
氰化物 (mg/L)	<0.0003	<0.0003	< 0.0003
砷 (mg/L)		<0.00004	<0.00004
汞 (mg/L)	<0.00004	<0.004	<0.004
六价铬(mg/L)	<0.004		<0.001
铅 (mg/L)	<0.001	<0.001	<0.0001
镉 (mg/L)	< 0.0001	<0.0001	
铁 (mg/L)	< 0.03	0.0742	<0.03
锰 (mg/L)	0.0434	<0.01	0.0989
钾 (mg/L)	12.3	7.53	10.0
	6.38	7.81	6.20
钠 (mg/L)	9.01	8.59	9.24
钙 (mg/L)	7.30	5.78	6.89
镁(mg/L)		10	11
碳酸盐 (mg/L)	11	7	6
重碳酸盐 (mg/L)	8		<0.01
石油类(mg/L)	<0.01	<0.01	<0.002
二甲苯(mg/L)	< 0.002	<0.002	<0.002

检测点位	采样日期	采样时间	非甲烷总烃/(mg/m³)
位例 尽 区	7111	7:00~7:01	1.05
		7:21~7:22	0.78
	9月12日	7:43~7:44	0.83
		7:59~8:00	1.08
		7:02~7:03	1.00
		7:25~7:26	1.37
	9月13日	7:45~7:46	1.11
		8:00~8:01	1.18
		7:00~7:01	1.15
		7:19~7:20	1.12
	9月14日	7:39~7:40	0.90
		7:59~8:00	0.85
		7:00~7:01	0.78
		7:19~7:20	0.68
厂界下风向	9月15日	7:39~7:40	0.31
		7:59~8:00	0.63
		15:20~15:21	0.37
		15:40~15:41	1.23
	9月16日	15:50~15:51	1.17
		15:59~16:00	1.09
		15:20~15:21	1.21
		15:30~15:31	0.94
	9月17日	15:40~15:41	0.96
		15:58~15:59	0.93
		15:20~15:21	1.05
	9月18日	15:42~15:43	0.93
		15:58~15:59	1.01
		16:10~16:11	0.98

检测点位	采样日期	采样时间	二甲苯/(mg/m³)
一位例示区	9月11日	14:00~15:00	<1.5×10 ⁻³
		20:00~21:00	<1.5×10 ⁻³
		2:00~3:00	<1.5×10 ⁻³
	-	8:00~9:00	<1.5×10 ⁻³
	9月12日	14:00~15:00	<1.5×10 ⁻³
		20:00~21:00	<1.5×10 ⁻³
		2:00~3:00	<1.5×10 ⁻³
	-	8:00~9:00	<1.5×10 ⁻³
	9月13日	14:00~15:00	<1.5×10 ⁻³
		20:00~21:00	<1.5×10 ⁻³
		2:00~3:00	<1.5×10 ⁻³
		8:00~9:00	<1.5×10 ⁻³
	9月14日	14:00~15:00	<1.5×10 ⁻³
		20:00~21:00	<1.5×10 ⁻³
厂界下风向	9月15日	2:00~3:00	<1.5×10 ⁻³
		8:00~9:00	<1.5×10 ⁻³
		14:00~15:00	<1.5×10 ⁻³
		20:00~21:00	<1.5×10 ⁻³
		2:00~3:00	<1.5×10 ⁻³
		8:00~9:00	<1.5×10 ⁻³
	9月16日	14:00~15:00	<1.5×10 ⁻³
		20:00~21:00	<1.5×10 ⁻³
		2:00~3:00	<1.5×10 ⁻³
	9月17日	8:00~9:00	<1.5×10 ⁻³
		14:00~15:00	<1.5×10 ⁻³
		20:00~21:00	<1.5×10 ⁻³
		2:00~3:00	<1.5×10 ⁻³
		8:00~9:00	<1.5×10 ⁻³

无组织废气(表3)

检测点位	采样日期	颗粒物/(mg/m³)
1000	9月11日~12日	0.222
	9月12日~13日	0.206
	9月13日~14日	0.211
	9月14日~15日	0.203
厂界下风向	9月15日~16日	0.218
	9月16日~17日	0.256
	9月16日~17日	0.248

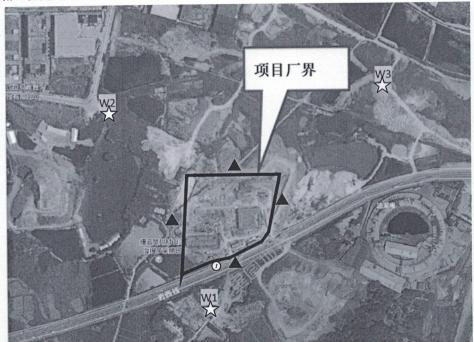
噪声(表1)

检测日期		9月12日				
检测点位	测量值 Leq[dB(A)]		标准值			
	昼间	夜间	昼间	夜间		
 厂界东侧	62.4	48.5	1	1		
厂界南侧	60.3	48.8	I	1		
厂界西侧	57.8	47.1	/	1		
	57.1	45.9	1	1		
厂界北侧 检测环境条件情况	风速: 1.0m/s	天气状况: 晴	检测地点(实验室内/外)	实验室外		

噪声 (表 2)

检测日期	9月13日				
4五 65 1 1 79 3	测量值 Leq[dB(A)]		标准值		
检测点位	昼间夜间		昼间	夜间	
厂界东侧	63.1	48.9	1	1	
一	60.5	48.5	1	1	
	58.8	47.4	1	1	
厂界西侧	59.8	46.2	1	1	
厂界北侧 ————————————————————————————————————		天气状况: 晴	检测地点(实验室内/外)	实验室外	

报告结束


报告编制:王婷婷

编制日期: 2023.10.19

审核日期: 2013-10-19

附: 检测点位示意图

□ 噪声检测点位 □ 地下水检测点位 □ 无组织废气检测点

附:气象常规表

采样点位	检测时间	风向	风速 (m/s)	气温 (℃)	气压 (KPa)	天气情况
	9月11日	北	1.1	42.2	99.2	晴
	9月12日	北	1.0	29.8	99.5	晴
	9月13日	北	1.0	31.9	99.5	晴
厂界下风向	9月14日	北	1.0	28.9	99.6	晴
	9月15日	北	0.9	30.0	99.5	晴
	9月16日	北	0.9	26.9	99.9	晴
	9月17日	北	0.9	29.8	99.5	晴

附: 水位数据表

采样点位	采样时间	水位 m		
W1	11:38	1.11		
W2	11:54	0.91		
W3	12:14	1.20		

附件 6: 大气、地下水、声环境现状检测报告

Shaping a World of Trust

检验检测报告

编号: SXENV-S2309037

委托单位

: 浙江齐鑫环境检测有限公司

委托地址

: 浙江省丽水市莲都区南明山街道绿源路7号6幢1号

受测单位

. /

受测地址

: 缙云县新建 01-M2-01-2 地块

联系人/联系方式

: 叶超/0578-2303509

项目名称

浙江家家智能家居有限公司年产 6000 套智能定制家居生产线

• 项目监测

来样方式

: 采样

检测地点

: 本公司实验室及项目地

报告编制说明:

- 1、报告无本公司"检验检测专用章"及"骑缝章"无效。
- 2、复印报告未重新加盖本公司的"检验检测专用章"无效。
- 3、报告无编制、审核、签发人员签章或签字无效。
- 4、报告涂改无效。
- 5、自送样检测仅对来样负责。

备注:

如有任何疑问或咨询, 可通过下述联络方式与我们联络

其他问题

技术问题

张丹丹 Della Zhang

(0575) 81115863 della.zhang@bureauveritas.com

涂大龙 Ronnie Tu (0575) 81188813

dalong.tu@bureauveritas.com

必维达诚 (浙江) 检测技术服务有限公司

编制人: 13

审核人: 344

签发人: 人大大

签发日期: 2023、10、23

必维达诚(浙江)检测技术服务有限公司

地址:浙江省绍兴市柯桥区柯岩街道柯南商务中心 4 幢 4-5 层

邮编:312030

联系电话:(0575)81188760

本报告受 http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ 发布之日发布的测试条件约束,并通过引用纳入本报告,仅供您使用。只有在事先得到我们的书面许可的情况下,才允许向任何其他个人或实体复制或为其复制本报告,或使用我们的名称或商标。本报告只阐述了我们对此处已确定的测试样本的调查结果。除非特别明确指出,本报告中列出的结果并不表示或代表抽取测试样品的批次或任何类似或相同产品的质量或特性。我们的报告包括您要求的所有测试,以及根据您提供给我们的信息得出的结果。 测量的不确定性只有在认可测试的要求下了会提供。符合性声明是基于简单的验收标准,不考虑测量不确定性,除非另有书面要求。自本报告发布之口起,费方有 60 天的时间通知我们由于我们的疏忽造成的任何重大错误或遗漏,或者如果您要求提供测量不确定性,由于我们的流忽造成的任何重大错误或遗漏,或者如果您要求提供测量不确定性。如果没有在规定的时间内提出这样的问题,将构成您对本报告的完整性、所进行的测试和报告内容的证确性的先条件接受。

必维达诚(浙江)检测技术服务有限公司 BV Dacheng (Zhejiang)Testing Technical Service Co.Ltd

Shaping a World of Trust

检验检测报告

编号: SXENV-S2309037

第4页共14页

二、检测结果

土壤检测结果

土 壤 检 测 结 果							
检测点位	厂内表层样 1 (0-0.5m)	柱状样 1 (0-0.5m)	柱状样 1 (1.5-2m)	柱状样 1 (2.5-3m)			
采样日期	2023年9月21日	2023年9月21日	2023年9月21日	2023年9月21日			
检测日期	2023年9月22~10 月17日	2023年9月24~10 月17日	2023年9月24~10 月17日	2023年9月24~10月17日			
样品编号	T230921Bc011a	T230921Bc021a	T230921Bc021b	T230921Bc021c			
样品性状	棕灰色、砂壤土、 干	棕色、砂壤土、干	棕色、砂壤土、干	棕色、砂壤土、潮			
汞(mg/kg)	0.050	0.046	0.040	0.062			
砷(mg/kg)	8.46	6.80	7.25	6.60			
六价铬(mg/kg)	<0.5	< 0.5	<0.5	<0.5			
铅(mg/kg)	43.2	41.2	50.3	43.0			
镉(mg/kg)	0.41	0.44	0.34	0.42			
铜(mg/kg)	22	8	5	13			
镍(mg/kg)	11	11	9	11			
pH 值(无量纲)	8.04	7.58	7.22	7.33			
石油烃(C ₁₀ -C ₄₀) (mg/kg)	123	114	90	86			
四氯化碳 (mg/kg)	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³			
氯仿(mg/kg)	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³			
氯甲烷(mg/kg)	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³			
1,1-二氯乙烷 (mg/kg)	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³			
1,2-二氯乙 烷 (mg/kg)	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³			
1,1-二氯乙烯 (mg/kg)	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³			
顺式-1,2-二氯乙烯 (mg/kg)	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³			
反式-1,2-二氯乙烯 (mg/kg)	<1.4×10 ⁻³	<1.4×10 ⁻³	<1.4×10 ⁻³	<1.4×10 ⁻³			
二氯甲烷 (mg/kg)	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³			

必维达诚(浙江)检测技术服务有限公司 BV Dacheng (Zheijang)Tosting Tochnical Service C. Le

BV Dacheng (Zhejiang)Testing Technical Service Co.Ltd

Shaping a World of Trust

检验检测报告

编号: SXENV-S2309037

第5页共14页

二、检测结果

土壤检测结果

工 埃 位 侧 结 朱							
检测点位	厂内表层样 1 (0-0.5m)	柱状样 1 (0-0.5m)	柱状样 1 (1.5-2m)	柱状样 1 (2.5-3m)			
采样日期	2023年9月21日	2023年9月21日	2023年9月21日	2023年9月21日			
检测日期	2023年9月22~10月17日	2023年9月24~10月17日	2023年9月24~10月17日	2023年9月24~10月17日			
样品编号	T230921Bc011a	T230921Bc021a	T230921Bc021b	T230921Bc021c			
样品性状	棕灰色、砂壤土、干	棕色、砂壤土、干	棕色、砂壤土、干				
1,2-二氯丙烷 (mg/kg)	<1.1×10 ⁻³	<1.1×10-3	<1.1×10 ⁻³	<1.1×10 ⁻³			
1,1,1,2-四氯乙烷 (mg/kg)	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³			
1,1,2,2-四氯乙烷 (mg/kg)	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³			
四氯乙烯 (mg/kg)	<1.4×10 ⁻³	<1.4×10 ⁻³	<1.4×10 ⁻³	<1.4×10 ⁻³			
1,1,1-三氯乙烷 (mg/kg)	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³			
1,1,2-三氯乙烷 (mg/kg)	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³			
三氯乙烯 (mg/kg)	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³			
1,2,3-三氯丙烷 (mg/kg)	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³			
氯乙烯(mg/kg)	<1.0×10-3	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³			
苯(mg/kg)	<1.9×10 ⁻³	<1.9×10 ⁻³	<1.9×10 ⁻³	<1.9×10 ⁻³			
氯苯(mg/kg)	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³			
1,2-二氯苯 (mg/kg)	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³			
1,4-二氯苯 (mg/kg)	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³			
乙苯 (mg/kg)	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³			
苯乙烯(mg/kg)	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³			
甲苯(mg/kg)	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³			
间,对-二甲苯 (mg/kg)	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³			
邻-二甲苯 (mg/kg)	<1.2×10 ⁻³ 示该物质的检测结果小于	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³			

BV Dacheng (Zhejiang)Testing Technical Service Co.Ltd

Shaping a World of Trust

检验检测报告

编号: SXENV-S2309037

第6页共14页

二、检测结果

		土壤检测结果		
检测点位	厂内表层样 1 (0-0.5m)	柱状样 1 (0-0.5m)	柱状样 1 (1.5-2m)	柱状样 1 (2.5-3m)
采样日期	2023年9月21日	2023年9月21日	2023年9月21日	2023年9月21日
检测日期	2023年9月22~10月17日	2023年9月24~10月17日	2023年9月24~10月17日	2023年9月24~10月17日
样品编号	T230921Bc011a	T230921Bc021a	T230921Bc021b	T230921Bc021c
样品性状	棕灰色、砂壤土、干	棕色、砂壌土、干	棕色、砂壤土、干	棕色、砂壤土、潮
硝基苯(mg/kg)	< 0.09	< 0.09	< 0.09	< 0.09
2-氯酚 (mg/kg)	< 0.06	< 0.06	< 0.06	< 0.06
苯并[a]蒽 (mg/kg)	<0.1	<0.1	<0.1	<0.1
苯并[a]芘 (mg/kg)	<0.1	<0.1	<0.1	<0.1
苯并[b]荧蒽 (mg/kg)	<0.2	< 0.2	<0.2	<0.2
苯并[k]荧蒽 (mg/kg)	<0.1	<0.1	<0.1	<0.1
萬(mg/kg)	< 0.1	< 0.1	< 0.1	< 0.1
二苯并[a, h]蒽 (mg/kg)	<0.1	<0.1	<0.1	< 0.1
茚并[1,2,3-cd]芘 (mg/kg)	<0.1	<0.1	<0.1	< 0.1
萘 (mg/kg)	< 0.09	< 0.09	< 0.09	< 0.09
苯胺(mg/kg)	< 0.08	< 0.08	< 0.08	<0.08
渗透率 (mm/min)	0.136	1	/	/
容重(g/cm³)	107	1	,	4

BV Dacheng (Zhejiang)Testing Technical Service Co.Ltd

Shaping a World of Trust

检验检测报告

编号: SXENV-S2309037

第7页共14页

二、检测结果

土壤检测结果

检测点位	柱状样 2	柱状样 2	柱状样 2
	(0-0.5m)	(1.5-2m)	(2.5-3m)
采样日期	2023年9月21日	2023年9月21日	2022 # 0 # 21 #

BV Dacheng (Zhejiang) Testing Technical Service Co. Ltd.

BV Dacheng (Zhejiang)Testing Technical Service Co.Ltd

Shaping a World of Trust

检验检测报告

编号: SXENV-S2309037

第9页共14页

二、检测结果

土壤检测结果

		壤 检 测 结 果	
检测点位	柱状样 2 (0-0.5m)	柱状样 2 (1.5-2m)	柱状样 2 (2.5-3m)
采样日期	2023年9月21日	2023年9月21日	2023年9月21日
检测日期	2023年9月24~10月17日	2023年9月24~10月17日	2023年9月24~10月17日
样品编号	T230921Bc031a	T230921Bc031b	T230921Bc031c
样品性状	棕色、砂壤土、干	棕色、砂壤土、潮	棕色、砂壤土、潮
硝基苯(mg/kg)	< 0.09	< 0.09	< 0.09
2-氯酚 (mg/kg)	< 0.06	< 0.06	< 0.06
苯并[a]蒽 (mg/kg)	<0.1	<0.1	<0.1
苯并[a]芘 (mg/kg)	<0.1	<0.1	<0.1
苯并[b]荧蒽 (mg/kg)	<0.2	<0.2	< 0.2
苯并[k]荧蒽 (mg/kg)	<0.1	<0.1	<0.1
蕰(mg/kg)	<0.1	< 0.1	< 0.1
二苯并[a, h]蒽 (mg/kg)	<0.1	<0.1	<0.1
茚并[1,2,3-cd]芘 (mg/kg)	<0.1	< 0.1	<0.1
萘(mg/kg)	< 0.09	< 0.09	< 0.09
苯胺 (mg/kg)	< 0.08	< 0.08	< 0.08

BV Dacheng (Zhejiang)Testing Technical Service Co.Ltd

Shaping a World of Trust

检验检测报告

编号: SXENV-S2309037

第10页共14页

二、检测结果

土壤检测结果

		土壤检测	划 结 果				
检测点位	柱状样 3	柱状样 3	柱状样 3	厂外表层样 1	厂外表层样 2		
	(0-0.5m) 2023年9月21	(1.5-2m) 2023年9月21	(3-4m) 2023年9月21	(0-0.5m)	(0-0.5m)		
采样日期	日	日	日	2023年9月21日	2023年9月21日		
检测日期	2023年9月	2023年9月	2023年9月	2023年9月	2023年9月		
一	24~10月17日	24~10月17日	24~10月17日	22~10月17日	24~10月17日		
样品编号	T230921Bc041a	T230921Bc041b	T230921Bc041c	T230921Bc051a	T230921Bc061a		
样品性状	棕色、砂壤土、 干	棕色、砂壤土、 潮	棕色、砂壤土、 潮	棕色、砂壤土、 干	棕色、砂壤土、 干		
汞(mg/kg)	0.039	0.078	0.032	0.106	0.034		
砷(mg/kg)	5.85	5.10	6.89	7.08	6.91		
六价铬(mg/kg)	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
铅(mg/kg)	29.0	27.1	22.0	41.9	32.9		
镉(mg/kg)	0.25	0.21	0.22	0.27	0.06		
铜(mg/kg)	7	6	12	8	9		
镍(mg/kg)	4	13	11	15	12		
pH 值(无量纲)	7.45	7.47	8.10	7.98	6.68		
石油烃(C ₁₀ -C ₄₀) (mg/kg)	56	60	67	87	74		
四氯化碳(mg/kg)	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³		
氯仿(mg/kg)	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³		
氯甲烷(mg/kg)	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³		
1,1-二氯乙烷 (mg/kg)	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³		
1,2-二氯乙 烷 (mg/kg)	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³		
1,1-二氯乙烯 (mg/kg)	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10-3	<1.0×10 ⁻³		
顺式-1,2-二氯乙烯 (mg/kg)	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³		
反式-1,2-二氯乙烯 (mg/kg)	<1.4×10 ⁻³	<1.4×10 ⁻³	<1.4×10 ⁻³	<1.4×10 ⁻³	<1.4×10 ⁻³		
二氯甲烷(mg/kg)	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³		
対。 PI ト 丰 由 6 / 99 主 二	注,以上表由"<"表示该物质的检测结果小干检电阻						

BV Dacheng (Zhejiang)Testing Technical Service Co.Ltd

Shaping a World of Trust

检验检测报告

编号: SXENV-S2309037

第11页共14页

二、检测结果

土壤检测结果

土 및 大田 土 土 東 检 測 结 果						
检测点位	柱状样 3	柱状样 3	柱状样 3	厂外表层样 1	厂外表层样 2	
4	(0-0.5m) 2023年9月21	(1.5-2m)	(3-4m)	(0-0.5m)	(0-0.5m)	
采样日期	日	2023年9月21日	2023年9月21日	2023年9月21日	2023年9月21	
LA VIII I HE	2023年9月	2023年9月	2023年9月	2023年9月	日 2023年9月	
检测日期	24~10月17日	24~10月17日	24~10月17日	22~10月17日	24~10月17日	
样品编号	T230921Bc041a	T230921Bc041b	T230921Bc041c	T230921Bc051a	T230921Bc061a	
样品性状	棕色、砂壤土、 干	棕色、砂壤土、 潮	棕色、砂壤土、 潮	棕色、砂壤土、 干	棕色、砂壤土、	
1,2-二氯丙 烷					于	
(mg/kg)	<1.1×10 ⁻³					
1,1,1,2-四氯乙烷 (mg/kg)	<1.2×10 ⁻³					
1,1,2,2-四氯乙烷 (mg/kg)	<1.2×10 ⁻³					
四氯乙烯 (mg/kg)	<1.4×10 ⁻³					
1,1,1-三氯乙烷 (mg/kg)	<1.3×10 ⁻³					
1,1,2-三氯乙烷 (mg/kg)	<1.2×10 ⁻³					
三氯乙烯 (mg/kg)	<1.2×10 ⁻³					
1,2,3-三氯丙烷 (mg/kg)	<1.2×10 ⁻³					
氯乙烯(mg/kg)	<1.0×10 ⁻³					
苯(mg/kg)	<1.9×10 ⁻³					
氯苯 (mg/kg)	<1.2×10 ⁻³					
1,2-二氯苯 (mg/kg)	<1.5×10 ⁻³					
1,4-二氯苯 (mg/kg)	<1.5×10 ⁻³					
乙苯(mg/kg)	<1.2×10 ⁻³					
苯乙烯(mg/kg)	<1.1×10 ⁻³					
甲苯 (mg/kg)	<1.3×10 ⁻³					
间,对-二甲苯 (mg/kg)	<1.2×10 ⁻³					
邻-二甲苯 (mg/kg)	<1.2×10-3	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	
注 N L 丰 由 6 / 99 丰	二法伽医的松测好	H 1 - 14 - 1 - 11 H				

BV Dacheng (Zhejiang)Testing Technical Service Co.Ltd

Shaping a World of Trust

检验检测报告

编号: SXENV-S2309037

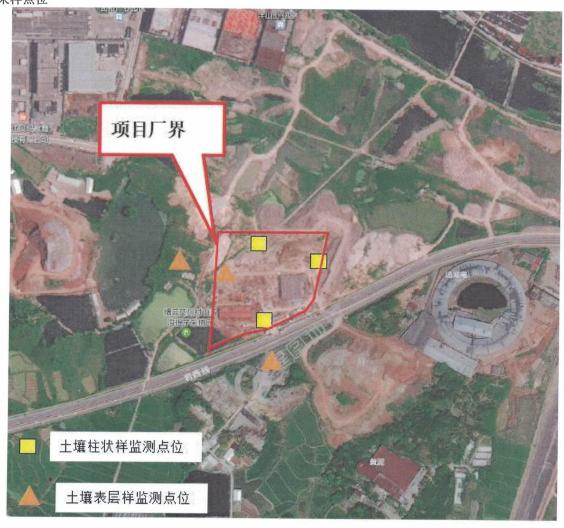
第12页共14页

二、检测结果

土壤检测结果

		土壤检	测 结 果			
检测点位	柱状样 3	柱状样 3	柱状样 3	厂外表层样 1	厂外表层样 2	
	(0-0.5m)	(1.5-2m)	(3-4m)	(0-0.5m)	(0-0.5m)	
采样日期	2023年9月21	2023年9月21	2023年9月21	2023年9月21	2023年9月21	
	日	<u> </u>	日	H	日	
检测日期	2023年9月	2023年9月	2023年9月	2023年9月	2023年9月	
	24~10月17日	24~10月17日	24~10月17日	22~10月17日	24~10月17日	
样品编号	T230921Bc041a	T230921Bc041b	T230921Bc041c	T230921Bc051a	T230921Bc061a	
样品性状	棕色、砂壤土、	棕色、砂壤土、	棕色、砂壤土、	棕色、砂壤土、	棕色、砂壤土、	
11 44 17.00	于	潮	潮	于	于	
硝基苯(mg/kg)	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	
2-氯酚 (mg/kg)	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	
苯并[a]蒽	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	
(mg/kg) 苯并[a]芘					.0.1	
本升[a]比 (mg/kg)	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
苯并[b]荧蒽						
(mg/kg)	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
苯并[k]荧蒽	<0.1	<0.1				
(mg/kg)	<0.1	< 0.1	< 0.1	< 0.1	<0.1	
 	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
二苯并[a, h]蒽 (mg/kg)	< 0.1	<0.1	<0.1	<0.1	< 0.1	
茚并[1,2,3-cd]芘 (mg/kg)	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	
萘(mg/kg)	<0.09	< 0.09	< 0.09	< 0.09	< 0.09	
苯胺 (mg/kg)	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	
渗透率 (mm/min)	/	/	/	0.343	/	
容重(g/cm³)	/	/	/	1.32	/	
总孔隙度(%)	/	/	/	30.9	/	
氧化还原电位 (mV)	/	/	/	192	/	
阳离子交换量 (cmol ⁺ /L)	/	/	1	22.9	/	
注。以上表由"一"表	三法伽医的协测好员	日 小 工 長 山 四				

必维达诚 (浙江) 检测技术服务有限公司 BV Dacheng (Zhejiang)Testing Technical Service Co.Ltd


Shaping a World of Trust

检验检测报告

编号: SXENV-S2309037

第13页共14页

三、采样点位

必维达诚(浙江)检测技术服务有限公司 BV Dacheng (Zhejiang)Testing Technical Service Co.Ltd

Shaping a World of Trust

检验检测报告

编号: SXENV-S2309037

第14页共14页

三、采样点位

———以下空白——

废气处理技术方案

营业执照

(副 本)

统一社会信用代码 91310120599757893E 证照编号 25000000201706290002

名 称 上海维毅环保科技有限公司

类 型 有限责任公司(自然人投资或控股)

住 所 上海市参贤区环城西路 3111 弄 555 号 3 幢-1084

法定代表人 王长青

注册资本 人民币800.0000万元整

成立日期 2012年7月11日

营业期限 2012年7月11日至 2032年7月10日

经 营 范 图 从事环保料技领域内的技术开发、技术咨询、技术服务、技术转让,涂装设备加工(限分支机构经营)、批发、零售,环保设备、制冷设备、机械设备、液压设备、机电设备及配件、家具、建材批发、零售,环保建设工程专业施工。

【依法须经批准的项目、经相关部门批准后方可开展经营活动】

环境污染治理工程总承包 资质证书

单位名称: 上海继毅环保科技有限公司

资质等级与范围:

法人代表: 王长青

大气污染治理 水污染治理 斯级 参级

单位地址:上海市奉密区头桥镇奥伟路1号

(以下空白)

证书编号:沪环协资证字2017第【456】号

有效期: 會年

发证单位:上海市环境保护产业协会

发证日期:二〇十三年五月二十六日

(各注:本证有不得转费、杂改、过期作度)

专项工程设计证书

单位名称: 上海继毅环保科技有限公司

证书等级: 乙级

证书范围: 水污染治理、大气污染治理工程

证书编号:沪环协资证字2017第(409)号

有效期: 曲年

发证单位,上海市环境保护产业协会 发证日期,二〇二二年五月二十六日

(备注:本证书不得转债、涉改、过期作用)

2. 设计条件

2.1 废气成分和参数

根据生产工艺和原材料配方,其工艺过程是经过前区工艺处理完毕后剩余的 VOC 有机废气进行处理。

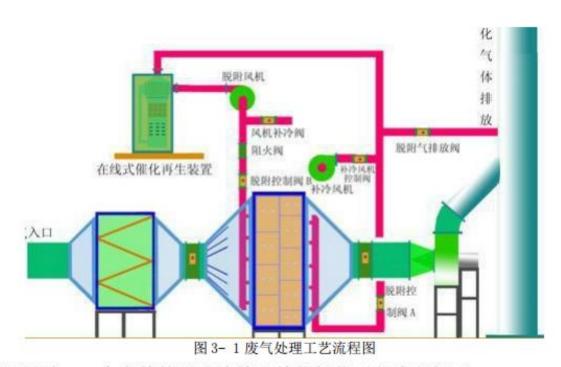
设备名称 数值 单位 备注 废气流量 m^3/h 40000 实际 废气浓度 350 mg/m³ 估值 C 废气温度 0 - 40常温

10h、300天/年

表 2-1 废气排放参数

备注:以上风量及浓度根据甲方提供资料进行核算,以实际运行为准

3. 设计分析


连续性

3.1 设计规范参照相关标准和规范

类别	現行标准/規范名称	現行标准/規稿号
	中华人民共和国环境保护法	2015年
	中华人民共和国大气污染防治法	2016年
	吸附法工业有机废气治理工程技术规范	HJ2026-2013
工艺设计	催化燃烧法工业有机废气治理工程技术规范	HJ2027-2013
通用标准	建筑设计防火规范	GB50016-2014
	石油化工企业设计防火规范	GB50160-2008
	工艺系统工程设计技术规范	HG/T20570
	涂料作业安全规程、有机废气净化装置安全技术规定	GB20101-2006
	设备及管道绝热技术通则	GB T4272-2008
	工业企业噪声控制设计规范	GB/T50087-2013
THE ROLL AND THE	铸造 尺寸公差与机械加工余量	GB/T6414-1999
设备制造 通用标准	耐热铸铁件	GB/T9437-2009
利用作	灰铸铁件	GB/T9439-2010
	焊接件通用技术条件	JB/ZQ 4000.3-86
	涂料通用技术条件	JB/ZQ 4000.10-86

干式过滤棉+活性炭吸附浓缩+催化氧化组合工艺

4.2 工艺流程说明

正常运行时,一个完整的吸附浓缩和催化氧化工艺流程如下:

- 1. 客户范围待处理的废气总量为 40000CMH。二号厂房与一号厂房各装一套 RC0 废气处理设施, 经过多级水旋处理在经 2 级干式过滤后的废气,进入后续设备的吸附床,吸附净化的洁净气体排放烟 囱,吸附在活性炭上的有机物,利用高温气体(90~100℃)对其进行脱附。高温气体来源为后方 C0 燃烧后的高温空气与自然风混合生成。
- 2. 经活性炭高温脱附后的废气,经过高效换热器汲取热量后再经过电加热器加热达到催化温度,在CO催化炉中完成氧化分解,废气得到净化。净化后的高温气体经过换热器进行热量利用,换热后的气体温度仍然较高,一部分气体用于活性炭脱附加热,剩余部分外排至烟囱或根据客户需求进行余热利用。

4.3 公用工程

Ŋ	Į I	要求	装机容量	单位	备注
	主风机		55	kw	
电力	脱附风机	220V/380V, 50Hz	5. 5	kw	
	小计		43	kw	
加热器	电加热	380V. 50Hz	75	KW	

注:以上为理论计算,以实际选型为准

4.4 能耗计算

能耗见技术参数表

名称	单位		用量更换时间		备注	
干式过滤棉	m2	50	约1个月1000*10	1.0万元		
催化加热装置	电	60KW+ 5.5KW 风 机饱和 30 干瓦	一周脱离一次 45/年 30 千瓦*5 小时 *3 箱*10 次/年	0.36 万元	加热管保养、 更换: 催化剂 更换	
风机	电	55KW 变频启动 40 赫兹	40 千瓦*6 小时 *300	7.22 万元		
活性碳更换	方	9m³ *6000 元	约2年	1.8万		
合计			11 万元/年			

5.1 活性炭吸附器

活性炭吸附床结构图

在活性炭吸附器的设计上,采用多层碳框设计。选用活性炭为吸附剂,具有吸附性能好,流体阻力小等特点。活性炭吸附床内装活性炭层及气流分布器,以保证净化有机气体的流场分布均匀,使吸附净化后的气体满足客户排放标准要求。活性炭模块化装填,具有强度高、操作方便等特点。

活性炭及活性炭模块设计图示

活性炭吸附器参数设计

序号	设备	设计规格	备注
	活性炭吸附器	2500*2500*2000 mm 4 台	
1	活性炭装填量	9m³	
2	吸附床风速		
3	吸附时间	循环控制	
4	脱附时间	4h-6h	

5.2 催化氧化炉

催化燃烧技术可以在较低温度(250~350°C)下实现对 VOCs 95%以上去除效率。反应完全,生成 CO₂和 H₂O,是一种最节能和高效的废气处理技术之一。借助催化剂可使有机废气在较低的起燃温度条 件下发生无焰燃烧,并氧化分解为 CO₂和 H₂O,同时放出大量热量。催化燃烧技术具有如下优势:

A. 起燃温度低,节省能源

有机废气催化燃烧与直接燃烧相比,具有起燃温度低、能耗低的显著特点。在某些情况下,催化 燃烧达到起燃温度后便无需外界供热。

B. 适用范围广

催化燃烧几乎可以处理所有的烃类有机废气及恶臭气体。对于有机化工、涂料、绝缘材料等行业 排放的低浓度、多成分、无回收价值的废气,采用吸附一催化燃烧法的处理效果更好。

C. 处理效率高,无二次污染

用催化燃烧法处理有机废气的净化率一般都在 95%以上,最终产物为无害的 CO₂ 和 H₂O (杂原子有机化合物还有其他燃烧产物),且由于燃烧温度低,能大量减少 NOx 的生成,因此不会造成二次污染。

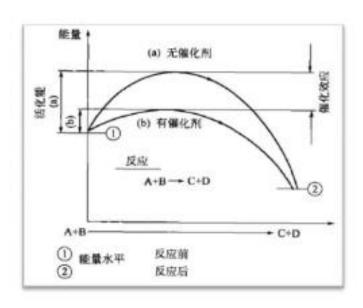


图 有催化剂和无催化剂时的活化能的变化示意图

催化氧化炉体设备由换热器、燃烧室、蓄热体、催化床、燃烧器或电加热器等组成。设备箱体采用 Q235 材料,外表面设加强筋,壳体良好密封。设备加工时采用 Sa2/2.5 级喷砂除锈,保证材料表面防锈效果良好。设备的内外壁在经过除锈处理工艺后,均涂高温防腐油漆;同时,内部采用高效岩棉保温,与气体介质接触部分由高性能保温棉隔离,耐温 1000~1100℃。保证燃烧室与蓄热设备外壁温度≤50℃(燃烧器周围除外)。高温部分设警示标志。炉体顶部设置有泄爆装置。设备设有操作维护平台,在平台和扶梯均设护栏,保障设备在操作、检修维护时能够更加安全、方便。

10 售后服务

工程质量符合国家或行业有关标准与规范,处理后通过环保部门验收。目的: 为保证顾客利益,并使公司大质量管理体系得以完整实施,特制定此售后服务管理办法。

10.1 设备保质期

免费保修期为 12 个月 (从设备调试运行日起)。

在正常使用情况下,发生故障或损坏,我公司负责保修,12 个月后,将收取合理的维修费用(人工费或故障件的更换材料费)。

在保修期内(12个月),如发生以下情况,应收取一定的维修费用:

- ▶ 因人为操作导致设备故障(损坏)的:
- ▶ 因不可抗拒因素导致设备故障(损坏)的如:火灾、水灾、地震、电压异常: 有关服务费用按设备制造厂家统一标准计算,如有合约,以合约优先的原则处理。

10.2 职责划分

经营部作为售后服务的主管部门,负责与客户的联络和沟通;总经办负责各部 门之间的协调工作;工程技术部负责设备维修人员的组织及售后服务的具体实施工 作。

10.3 工作程序

设备交付客户后,我方负责对顾客设备使用人员进行免费培训,并提供设备使用说明书。

附件 8: 废气处理技术方案(活性炭吸附+催化燃烧处理设备)

《浙江家家智能家居有限公司年产 6000 套智能定制家居生 产线项目环境影响报告书》评估会签到单

序号	姓名	单位	联系电话
1			
2			
3	This	York to the your	18969071808
4	3012	754128321-18845500F	133883883
5	孝秘德	的外外科学名	138576200
6	在如此	旗云县为真高	15057889797
7	根本	浙江家路的家居	18767843749
8	burg	是强调的	13157895788
9	好科谕	新波觀	15067457481
10	敖	God 422442213419 Ander	1335781135
11	in the	新建刻	1381184365
12	刘如	丽水市环华环保咨询有限公司	19858375625
13	最利荷	市出的在代表图文分局	1385705056
14	方政	动物和科丽水分公司	20 98857
15			
16			
17			
18			
19			
20			

浙江家家智能家居有限公司年产 6000 套智能定制家居生产线项目 环境影响报告书技术评审会专家组意见

2023年11月16日,受丽水市生态环境局委托,浙江环科环境研究院有限公司丽水分公司在丽水缙云主持召开《浙江家家智能家居有限公司年产6000套智能定制家居生产线项目环境影响报告书》技术评审会,参加会议的有丽水市生态环境局缙云分局、缙云县新建镇人民政府、浙江家家智能家居有限公司(建设单位)、丽水市环科环保咨询有限公司(环评单位)等单位代表和特邀的3位专家(名单附后)。建设单位介绍了项目基本情况,环评单位详细介绍了项目环境影响报告书的主要内容,经认真讨论和咨询,形成专家组咨询意见如下:

一、项目基本情况

浙江家家智能家居有限公司原厂址租用位于缙云县新建镇洋山工业区 1 号缙云县爱立特工贸有限公司的闲置厂房生产,主要从事木质饰面板和木门等产品的生产和销售。于 2018 年委托中环联新(北京)环境保护有限公司编制了《年产 5 万平方米木质饰面板及 2 万樘木门整治提升技改项目现状环境影响评估报告》,2018 年通过环保备案(编号:2018-008);2021 年企业委托浙江环昌科技有限公司编制了《年产 10 万平方智能定制家居木饰面板项目环境影响报告表》,同年取得丽水市生态环境局缙云分局出具的审批意见(丽环建缙(2021)39 号)。2022 年 5 月,企业自行组织开展并通过了"年产 10 万平方智能定制家居木饰面板项目"的环保设施竣工验收。现拟搬迁至缙云县新建 01-M2-01-2 地块(缙云县新建镇笕川村)新建 1 # 厂房、2 # 厂房和综合楼,地块总用地面积 23114.7 m²,总建筑面积50147.46 m²,实施年产6000套智能定制家居生产线项目。迁建后,现有厂区将停产。该项目目前已在丽水市缙云县经济商务局登记备案(项目代码:2203-331122-07-02-296379)。本项目主要原辅材料消耗、生产工艺流程、设备清单及配套公用工程等详见环境影响报告书原文。

二、对报告书质量的总体评价

提交评审的《浙江家家智能家居有限公司年产 6000 套智能定制家居生产线项目环境影响报告书》内容比较全面,评价重点基本合适;项目工程分析基本反映了

行业污染特征,提出的污染防治思路基本可行,评价结论总体可信,报告经修改完善后可上报。

三、对报告书的修改补充意见

- 1、完善相关编制依据,梳理校核废气排放相关标准,完善固废评价标准说明; 完善环境保护目标方位、距离等调查;完善项目与相关规划符合性分析,补充项目 与《浙江省涂装行业挥发性有机物污染整治规范》符合性分析,重点关注产业准入 符合性。
- 2、核实厂区总平布置,结合工艺过程等特征进一步细化各产品方案、原辅材料等内容,完善化学品的 MSDS 资料。核实涂装面积、漆膜厚度与密度、上漆率等参数,校核各种油漆等实际消耗量的合理性,校核油漆等原料成分与使用替代比例是否符合低 VOCs 含量原辅材料的要求,补充溶剂物料平衡。补充各粘合剂挥发性有机化合物是否符合胶黏剂挥发性有机化合物限量的要求。完善分析工艺技术装备先进性,校核调漆、喷漆、晾干和辊涂各工段有机废气污染因子和产生源强、收集效率、收集风量、污染物浓度和处理效率,复核涂装废气有组织和无组织污染源强,完善达标性判定。
- 3、补充周边同类污染物在建污染源调查,根据核实后的污染源强,校核污染源参数与大气环境影响分析内容;细化完善各环节废气收集和无组织控制措施,关注 UV 漆的预处理,细化废气治理措施的设计参数,补充有资质单位出具的吸附浓缩 RCO 装置设计方案,补充日常运行管理要求,确保处理效率和稳定达标排放。核实项目各类废水水质水量及相应的污染源强,校核废水处理设施方案可行性分析,完善废水回用可行性分析,核实全厂水平衡。
- 4、核实项目废活性炭、废催化剂、废包装桶等各类固废产生源强、固废代码及产生量,补充上胶过程废胶渣、废机油产生情况;完善危废库设置要求及库容合理性分析。
- 5、完善项目相关环境政策、规范相符性分析;核实项目环保投资;完善环境监测计划,完善排污许可类别判定与相应管理要求。完善总量控制平衡方案、附图和附件。

专家组签名:

7000 7000 7000 2023年11月16日

序号	专家意见	修改清单
1		已完善相关编制依据,梳理校核废气排放相关标
	标准,完善固废评价标准说明;完善环境保护	准,完善固废评价标准说明,见 P7-11;已完善
	目标方位、距离等调查;完善项目与相关规划	环境保护目标方位、距离等调查,具体见P28-31;
	符合性分析,补充项目与《浙江省涂装行业	已完善项目与相关规划符合性分析,具体见
	挥发性有机物污染整治规范》符合性分析,	P24-28;《浙江省涂装行业挥发性有机物污染整
	重点关注产业准入符合性。	治规范》现已废止。
2	核实厂区总平布置,结合工艺过程等特征进	已核实厂区总平布置,已结合工艺过程等特征进
	一步细化各产品方案、原辅材料等内容,完	一步细化各产品方案、原辅材料等内容,已核实
	善化学品的 MSDS 资料。核实涂装面积、漆	涂装面积、漆膜厚度与密度、上漆率等参数,校
	膜厚度与密度、上漆率等参数,校核各种油	核各种油漆等实际消耗量的合理性,校核油漆等
	漆等实际消耗量的合理性, 校核油漆等原料	原料成分与使用替代比例是否符合低 VOCs 含
	成分与使用替代比例是否符合低VOCs含量	量原辅材料的要求,具体见 P44-52; 己完善化
	原辅材料的要求,补充溶剂物料平衡。补充	学品的 MSDS 资料,具体见相关附件;已完善
	各粘合剂挥发性有机化合物是否符合胶黏	分析工艺技术装备先进性,具体见 P63;已校核
	剂挥发性有机化合物限量的要求。完善分析	调漆、喷漆、晾干和辊涂各工段有机废气污染因
	工艺技术装备先进性,校核调漆、喷漆、晾	子和产生源强、收集效率、收集风量、污染物浓
	干和辊涂各工段有机废气污染因子和产生	度和处理效率,复核涂装废气有组织和无组织污
	源强、收集效率、收集风量、污染物浓度和	染源强,完善达标性判定,具体见 P69-90。
	处理效率,复核涂装废气有组织和无组织污	
	染源强,完善达标性判定。	
3	补充周边同类污染物在建污染源调查,根据	已补充周边污染物在建污染源调查,具体见
	核实后的污染源强,校核污染源参数与大气	P132; 已根据核实后的污染源强,校核污染源
	环境影响分析内容;细化完善各环节废气收	参数与大气环境影响分析内容,已细化完善各环
	集和无组织控制措施,关注UV漆的预处理,	节废气收集和无组织控制措施,关注UV漆的预
	细化废气治理措施的设计参数,补充有资质	处理,细化废气治理措施的设计参数,具体见
	单位出具的吸附浓缩 RCO 装置设计方案,	P147-181; 已补充有资质单位出具的吸附浓缩
	补充日常运行管理要求,确保处理效率和稳 定达标排放。核实项目各类废水水质水量及	RCO 装置设计方案,见附件 8;已补充日常运 行管理要求,确保处理效率和稳定达标排放,具
	相应的污染源强,校核废水处理设施方案可	47 自连安尔,媚床处连双举和偿定达你开放,兵 体见 P234-236; 已核实项目各类废水水质水量
	行性分析,完善废水回用可行性分析,核实	及相应的污染源强,校核废水处理设施方案可行
	全厂水平衡。	性分析,完善废水回用可行性分析,核实全厂水
	土) 八十俣。	平衡, 具体见 P201-206、P91-92。
4	核实项目废活性炭、废催化剂、废包装桶等	已实项目废活性炭、废催化剂、废包装桶等各类
•	各类固废产生源强、固废代码及产生量,补	固废产生源强、固废代码及产生量,具体见
	充上胶过程废胶渣、废机油产生情况;完善危	P96-100: 已与企业核实,无上胶过程废胶渣和
	废库设置要求及库容合理性分析	废机油产生:已完善危废库设置要求及库容合理
		性分析, 具体见 P185。
5	 完善项目相关环境政策、规范相符性分析;	已完善项目相关环境政策、规范相符性分析;已
	核实项目环保投资;完善环境监测计划,完善	核实项目环保投资,具体见 P224;已完善环境
	排污许可类别判定与相应管理要求。完善总	监测计划,完善排污许可类别判定与相应管理要
	量控制平衡方案、附图和附件。	求,见 P231-234; 己完善总量控制平衡方案,
		见 P104-106; 已完善附图和附件,具体见附图
		和附件。
	以此 10. 丰安语	

附表 1 大气环境影响评价自查表

表 1 建设项目大气环境影响评价自查表

	工作内容				į	自查项	目							
评价等级与	评价等级	一级☑			=	級□	三	级□						
范围	评价范围	边长=50km□				5~50km□ 边长=5kn		-5km [▽]						
	SO2+NOx 排放量	≥2000t/a			500~2000	0t/a□		<500	Ot/a [☑]					
评价因子	评价因子				PM ₁₀ 、PM _{2.5} 、 苯系物、非甲				包括二次 PM _{2.5□} 不包括二次 PM _{2.5} ☑					
评价标准	评价标准	国家	标准☑		地力	方标准	<u>È</u> ☑	附录☑	其他	标准☑				
	评价功能区		_	类口口			二美	类区区	一类区和	口二类区口				
	评价基准年				(2022) 年							
现状评价	环境空气质量现状调查数 据来源		长期例符		准口		主管部门发布	布的数据标准□	现状补充标准☑					
	现状评价			达标	KX 🗹			不达	标区□					
污染源调查	调查内容	本项目非正	本项目正常排放源 [□] 本项目非正常排放源 [□] 现有污染源 [□] 拟替代的污染		拟替代的污				按源☑ 拟替代的污迹		染源□	其他在建、拟建 项目污染源□	区域污	5染源□
	预测模型	AEDMODD	DMS□	AUSTAL2000□		EDMS/AEDT	CALPUFF□	网格模 型□	其他□					
	预测范围	边长≥50km□			边长:	5~50km□	边长=	=5km [▽]						
	预测因子	预测因子(TSP、乙酸酯类、苯系物、非甲烷总烃、TVOC)					包括二次 PM _{2.5} 口 不包括二次 PM _{2.5} [©]							
J. /= TT 立目/	正常排放短期浓度贡献值	C 本项目最大占标率≤100% [☑]					C 本项目最大占标率>100%□							
大气环境影 响预测与评	正常排放年均浓度贡献值	一类区			C 本项目最大占标	₹≊≤1	0%□	C 本项目最大占	С 本項目最大占标率>10%□					
价	正书排放牛均依及贝默值	二类区			C 本项目最大占标	毫≤3	0%□	C 本项目最大占	标率>30	%☑				
	非正常 1h 浓度贡献值	非正常持续时长 (1) h C #E#			靠占标率≤100%			_常 占标 00%□						
	保证率日平均浓度和年平 均浓度叠加值			C 叠加	」达标☑			C 叠加	不达标□					
	区域环境质量的整体变化 情况			k≤-2	0%☑				20%□					
环境监测计	污染源监测	监测因子:(TS	SP、乙酸i TVOC、			总烃、		妄气监测☑ 妄气监测☑	无监	宜测□				
划	环境质量监测		监测因	子())		监测点位	立数 (1)	无业	左测□				
	环境影响			可	以接受 ☑		不可以接	受 🗆						
评价结论	大气环境防护距离				距())	一界最		1						
	污染源年排放量	颗粒物 11.57t/a			VOCs .098t/a									

注: "□",填"√";"()"为内容填写项

附表 2 地表水环境影响评价自查表

表2 建设项目地表水环境影响评价自查表

	工作内容	自	查项目				
	影响类型	水污染影响型☑;水文要素影响型 □					
影	水环境保护 目标	饮用水水源保护区 □;饮用水取水口 □; 重点保护与珍稀水生生物的栖息地 □;重 洄游通道、天然渔场等渔业水体 □;涉水	要水生生物的自然产卵	7场及索饵场、越冬场和			
响		水污染影响型					
识 别	影响途径	直接排放 □;间接排放 ☑;其他□	水温 □; 径流 □; 7				
<i>7</i> 1)	影响因子	持久性污染物 □; 有毒有害污染物 □; 非持久性污染物 ☑; pH 值 □; 热污染 □; 富营养化 □; 其他 □		聚)□;流速□;流量□;			
) T. I.A. ktr / m	水污染影响型	水文要	素影响型			
	评价等级	一级 □; 二级 □; 三级 A □; 三级 B ☑	一级 口; 二级 口; 三	三级 🗆			
		调查项目	数挑	居来源			
	区域污染源	已建 □; 在 建 □; 拟建 拟替代的污染源 □ □; 其他 □		平 □;环保验收 □;既 川 □;入河排放口数据			
	双型的人化人	调查时期	数携	居来源			
现	受影响水体水 环境质量	丰水期☑;平水期☑;枯水期☑;冰封期□ 春季□;夏季□;秋季□;冬季□	生态环境保护主管部门]☑;补充监测□;其他□			
状调	区域水资源开 发利用状况	未开发 □; 开发量 40%以下 □; 开发量 4	10%以上 口				
查		调查时期	数据	居来源			
	水文情势调查	丰水期□;平水期□;枯水期□;冰封期□ 春季□;夏季□;秋季□;冬季□	水行政主管部门□; ネ	补充监测□; 其他□			
	监测时期		监测因子	监测断面或 点位			
	补充监测	丰水期□;平水期□;枯水期□;冰封期□ 春季□;夏季□;秋季□;冬季□		监测断面或 点位个数() 个			
	评价范围	河流:长度()km;湖库、河口及近岸海	F域: 面积() km²				
	评价因子						
	评价标准	河流、湖库、河口: I 类 □; II 类 □; III类 □; IV类 □; V类 □ 近岸海域: 第一类 □; 第二类 □; 第三类 □; 第四类 □ 规划年评价标准 ()					
	评价时期	丰水期 □; 平水期 □; 枯水期 □; 冰封期 □ 春季 ☑; 夏季 ☑; 秋季 ☑; 冬季 ☑					
现状评价	评价结论	水环境功能区或水功能区、近岸海域环境功口: 达标 ☑; 不达标□ 水环境控制单元或断面水质达标状况 □: 达标 □; 水环境保护目标质量状况 □: 达标 □; 对照断面、控制断面等代表性断面的水质和不达标 □ 底泥污染评价 □ 水资源与开发利用程度及其水文情势评价水环境质量回顾评价 □ 流域(区域)水资源(包括水能资源)与于生态流量管理要求与现状满足程度、建设项水流状况与河湖演变状况 □ 依托污水处理设施稳定达标排放评价 ☑		达标区 ☑ 不达标区□			

	工作内容				自査项目					
	预测范围	河流:长度()km;湖库	、河	口及近岸海域:	面积	() km²			
	预测因子	()								
影响	预测时期	春季 □; 夏季	丰水期 □; 平水期 □; 枯水期 □; 冰封期 □ 春季 □; 夏季 □; 秋季 □; 冬季 □ 设计水文条件 □							
预测	预测情景	正常工况 口; 污染控制和减约	建设期 □; 生产运行期 □; 服务期满后 □ 正常工况 □; 非正常工况 □ 污染控制和减缓措施方案 □ 区(流)域环境质量改善目标要求情景 □							
	预测方法	数值解 □:解析解 □;其他 □ 导则推荐模式 □:其他 □								
	水污染控制和 水环境影响减 缓措施有效性 评价	区(流)域水៛	不境质量改善	目标	□;替代削减源					
影响评价	水环境影响评 价	水环境功能区或满足水环境保护水环境控制单元 满足重点水污迹或量替代要或减量替代要或满足区(流) 地水文要素影响型流量符合性评价	排放口混合区外满足水环境管理要求 □ 水环境功能区或水功能区、近岸海域环境功能区水质达标 ☑ 满足水环境保护目标水域水环境质量要求 ☑ 水环境控制单元或断面水质达标 □ 满足重点水污染物排放总量控制指标要求,重点行业建设项目,主要污染物排放满足等量或减量替代要求 □ 满足区(流)域水环境质量改善目标要求 □ 水文要素影响型建设项目同时应包括水文情势变化评价、主要水文特征值影响评价、生态流量符合性评价 □ 对于新设或调整入河(湖库、近岸海域)排放口的建设项目,应包括排放口设置的环境合理性评价 □							
	污染源排放量	污染物料	名称		排放量/ (t/a)		1	浓度/(mg/L)		
	行来你开放里 核算	COL		0.635		30				
	10.77	NH ₃ -1			0.021			1		
	替代源排放情	污染源名称	排污许可证 编号	E	污染物名称	排放	(量/ (t/a)	排放浓度/(mg/L)		
	况	()	()		()	()	()		
	生态流量确定				; 鱼类繁殖期(鱼类繁殖期(
	环保措施	污水处理设施 程措施□; 其他		设施	☑;生态流量份	降设	施 口;区域	削减 口;依托其他工		
防					境质量			污染源		
治		监测方式	手动 口;	自	动 □; 无监测 □]	手动 ☑;	自动 🗹; 无监测 🗆		
措	监测计划	监测点位			()		(P11 00	(1)		
施		监测因子			()			COD _{Cr} 、氨氮、总磷、 【、石油类等)		
	污染物排放清单									
	评价结论	可以接受☑;								
注:	"□"为勾选项,□	可√;"()";	为内容填写项	;"省	S注"为其他补充区	勺容。				

附表 3 土壤环境风险评价自查表

表3 土壤环境影响评价自查表

	工作内容	完成情况	备注
	影响类型	污染影响型☑; 生态影响型□; 两种兼有□	/
	土地利用		规划土地使
	类型	建设用地√;农用地□;未利用地□	用图
	占地规模	(2.31) hm ²	/
	敏感目标调查	敏感目标()、方位()、距离()	/
影响	影响途径	大气沉降☑; 地面漫流☑; 垂直入渗☑; 地下水位□; 其他(/)	/
识别	全部污染物	PH、COD _{Cr} 、氨氮、非甲烷总烃、二甲苯等	/
	特征因子	二甲苯	
	所属土壤环境		
	影响评价项目	Ⅰ类☑;Ⅲ类□;Ⅳ类□	
	类别		
	敏感程度	敏感□; 较敏感□; 不敏感☑	
评价工	二作等级	一级口; 二级凶; 三级口	
	资料收集	a) $\sqrt{\ }$; b) $\sqrt{\ }$; c) $\sqrt{\ }$; d) $\sqrt{\ }$	
现状	理化特性		
调查	现状监测点位	占地范围内 占地范围外 深度	
内容	200 MILE 1931 V.V. 127	样点数 4 2 0~3	
	现状监测因子	HM(重金属 7 项)、VOC(挥发性有机物 27 项)、SVOC(半挥发性有机物 11 项)+石油烃(C10-C40)、PH	
	评价因子	同现状监测因子	
그리 기다	评价标准	GB 15618□; GB 36600回; 表 D.1□; 表 D.2□; 其他 ()	
现状评价	现状评价结论	场地内各监测点位、各监测指标均低于《土壤环境质量 建设用地土	
ורדעו		壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选	
		值标准限值,土壤环境现状质量良好	
	预测因子	二甲苯	
	预测方法	附录 E ☑; 附录 F □; 其他(实测调查)	
		影响范围(厂界外延 0.2km)	
影响	 预测分析内容	影响程度(项目运行多年后,土壤各指标仍能满足《土壤环境质量标	
预测		准 建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用	
		地筛选值标准要求)	
	预测结论	达标结论: a) √; b) □; c) □	
	77. 77. LH. 74.	不达标结论: a) ロ; b) ロ	
	防治措施	土壤环境质量现状保障□;源头控制√;过程防控√;其他(/)	
防治	FIC 마산 내는 가다.	监测点数 监测指标 监测频次	
措施	跟踪监测	pH、土壤污染物基本项目(45 项)、石 1 次/5 年	
	信息公开指标	/ HUAL	
评价结		本项目的营运期区域土壤环境各污染物浓度可满足《土壤环境质量标	
		准 建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用	
		地筛选值标准要求。因此,本项目的土壤环境影响是可接受的。	

注 1: "□"为勾选项,可√; "()"为内容填写项; "备注"为其他补充内容。

注 2: 需要分别开展土壤环境影响评级工作的,分别填写自查表。

附表 4 环境风险评价自查表

表4 建设项目环境风险评价自查表

		T	表4 建设项	日本	境风险评价自查	表			
	工作内容			ı	完成情况	1			
	危险物质	名称	二甲苯		名称	危险	险废物		
	厄险物质	存在总量/	t 0.21		存在总量/t	23.2			
		大气	500m 范围	内人口	数人	51	km 范围内人	、口数人	
风险		人气	每公里管	段周边	200m 范围内人口	数(最大	()	人	
调查	T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	加丰山	地表水功能敏!	感性	F1 □	F	2□	F3□	
	环境敏感性	地表水	环境敏感目标	分级	S1□	9	52□	S3□	
		lub T ale	地下水功能敏息	感性	G1□	0	62□	G 3□	
		地下水	包气带防污性	能	D1 □	[02☑	D3□	
14.	ショーサズル	Q值	Q<1🗹		1≤Q<10□	10≤0	ຊ<100□	Q>100□	
物质	5及工艺系统	M 值	M1□		М2□	N	/ 13□	M4□	
	危险性	P值	P1 □		P2□	F	23□	P4□	
		大气	E1 □	E1□				E3□	
环	境敏感程度	地表水	E1 □		E2□		E3□		
		地下水	E1 □		E2□		E3□		
环	境风险潜势	IV⁺□	IV□		III□		II 🗆	I 🗹	
	评价等级		一级□		二级口	=		简单分析☑	
□ 7A	物质危险性		有毒有			易燃	易爆☑		
风险 识别	环境风险类型		泄漏	7	火灾、爆		爆炸引发伴	炸引发伴生/次生污染物排放🗹	
以刑	影响途径		大气☑			<u> </u>		地下水☑	
事	故影响分析	源强设定方法□			计算法□	经验估算法□		其他估算法□	
			预测模型		SLAB□	AFTOX□		其他	
风险	大气		35 河() 1 田		大气毒性终点浓度-1 最大影响范围m				
预测			预测结果		大气毒性终点浓	度-2 最っ	大影响范围_	m	
与评	地表水		最近	环境敏	感目标,	到达时间	h		
价	地下水			下游	一区边界到达时间		h		
	地下水		最近环	境敏感	目标,	到达时间	h	l	
		(1) 企业-	一定要强化风风险	脸意识、	加强安全管理;				
		(2) 库房、	. 场所的消防设施	色、用 🕫	自设施、防雷防静	电设施等	必须符合国	家规定的安全要求。	
重点	风险防范措施	(3) 加强计	没备监督,及时 2	 支现、消	肖除设备隐患,加	强检修过	程管理,防	止人员责任事故,加	
		强运行操作	管理,杜绝恶性	误操作	事故。				
		(4) 委托纳	编制突发环境事件	井应急剂	页案,落实各项应2	急措施及	物资。		
评化	介结论与建议	在企业加强	管理,落实各项	风险防	范措施的情况下,	本项目5	不境风险可愿	方控。	
注. "	□"为勾选项,	""为填写项	ī.						

注: "□"为勾选项, ""为填写项。

附表 5 声环境影响评价自查表

表5 声环境影响评价自查表

			,	יאטעו	1441 N H 🗁						
工作内容		自查项目									
评价等级	评价等级	一级□			二	级口	三级团				
与范围	评价范围	200m☑			大于 200n	n□	小于 200m□				
评价因子	评价因子	等效连续 A 声级☑		最	大A声级□	计权等效	权等效连续感觉噪声级□				
评价标准	评价标准	国	家标准☑		地方标	准口	国外标准□				
	环境功能区	0 类区□	1 类区		2 类区口	3 类区团	4a §	类区口	4b 类区□		
	评价年度/	初期□			近期図	中期口		远期□			
现状评价	现状调查方法	现场实测法☑		Ę	见场实测加模型	型算法口收集资	段料□	□ 收集资料□			
	现状评价	达标百分比		100%							
噪声源调查	噪声源调查方 法	现场多	上测□		已有资	資料☑		研究成果□			
	预测模型	导则推荐构	莫型☑	其他□	1						
声环境影	预测范围	200m⊻			大于 200m□			小于 200m□			
响预测与	预测因子	等效连续 A 声级☑			最大A声线	吸口 计权等	致连续	效连续感觉噪声级□			
评价	厂界噪声贡献值		达标	▼ 不达标□							
	声环境保护目标 处噪声值				达标□ 不达标□						
环境监测	排放监测	厂界监测	Ņ ☑	固定位	立置监测□	自动监测口手起	动监测□] =	无监测口		
计划	声环境保护目 标处噪声监测	Ш	拉测因子:	()	监测点位数	()		无监测☑		
评价结论	环境影响				可行☑	不可行□					
注: "口"	为勾选项,可√;	" () "	'为内容5	真写项							

建设项目环境影响报告书审批基础信息表

SC SHIPP OF	10 May 10	序号 名称 () () () () () () () () () (年使用量	计量单位	有有有害	-	18-19	81		美分 (%)		F最大使用量 计量	
W 107 84 75	· 然料信息	718		主要解料	The second secon		Commence of the last		-	1.00	105 M	L with with	中海 土地 (多年	
	7	风景名胜区 其他					1	核心景区、一般和	AIS			口 雅定口 美殖口	并信 重建 (多姓	
	1	饮用水水蒸保护区 (地	F)				1	一級保护区、二級保护区				LINK LINK L	孙弘 面建 (多次	
的保护		放用水水酸保护区 (地表)		放用水水蒸保护区(地表)			1	一級保护区、二級保护区、確保护区				그 됐다니 싫었다	补恤 重建 (多选	
 日本及店律法規規定		生态保护目标生态保护红线自然保护区		911		IK AL	(日報)	核-6%、循冲区、试验区		-		Lines Lines	*本の学術権 「被領」 非計 直建(多法) 「被領」 非計 直建(多法)	
										RINDA	(会開)	A CONTRACTOR OF THE PARTY OF TH		
	1223	A. W. Makerian	影响及主要抽搐		8#	200	主要保护对象	工程影响协议		是自占用	古用画朝	-	smarrie a	
	18													
	_ 3	卖金属幹												
		4												
	1 3	9												
		*												
	政化	W							510.	"	-	000		
		挥发性有机物		1.224	3.098	1.224			3.0	P-701	1.874			
		聯段物		0.107	11.570		9.107		II.:	570	11,463			
		混氧化物								- 0				
	11-4	二氧化碳												
被能		庚气量(万标立方术/年)								5				
接級		其他特征污染物												
the I		类全局种												
85 Sh										-				
		\$6												
		*												
	度水	10												
	Town I	0,91												
		和書									900			
		3034	0.001 0.018		0.601		0.018 0.0							
	THE IT	COD	0.028 0.527		0.028				1.785 1.663 1.527 0.499					
	11 3	水量 (万吨)	9.692		1.755		0.092	4 (454)	1.3					
7			(3)実際排放量 (194/年)	(00许可推放借· (00/年)	②預測接款量 (地等)	金子以斯伯	老"刚就是(吨/年)	□ (回 (中 / 中)	(現内に)		(内特放地減益 (地/年)		(国家、资格审批项	
建设 单位	污染物		(6)12+	在建)	(报建成调整变更)		ALS IS IN	(已建+在建+孤建成调整类)		y .			K MONAGE AND	
		A HOUSE	現在工程		本工程 本工程	1977			級体工程		衛江省屬水市逐春区	南明山侧道绿满路7号	6報1号5楼	
		(组织机构代码)	150200000000000000000000000000000000000		所建01-M2-01-Z地块(增云品新建筑证)	1/2 00 21 12 KB 12, 20 0		THE PRINTS	40.00	管理等	浙江省県水市茂郡区南町山街道場園路79		SCHOOL TO FIRM	
	统一社会信用代码		9133112256	52364527A	联系电话	18767843749		単位	编制主持人	职业资格证书		intersorate.		
					主要负责人	樊建勇		i#th	married .	信用報句	Bi-003324		2	
	単位名称		杨江东家智能	家居有限公司	2公司			The second	T-12.0200	技名		E RESESTANTON	91331102329968	
	Market Name of the State of the			法定代表人	陈湘芬		PIKING COA	単位名称	图本市环科环保告省有限公司		所占比例(%) 统一社会信用代码	3.50% 913311023299688		
建设项	島投資 (ガル)		1		16200.00			等点经度 环保教费 (万万	4:3	発点料度 工程长度 (千米) 560 00 所占比例 (%)		1.5(6)		
	建设地点条标 (线性工程)		料点地度	CANONICATION DESIGNATION		10010 (00700)						-		
	建设地点中心坐标 (非线性工程)		190gt 120:037528		林度	28.7(923)		古地剪根 (平方米) 23U5		环评文件类据		环境影响报告	is .	
	规划环评审查机关					规划环评申查查玩文号								
	模划环件开模特况					规划环译文件名								
	THE.	(改、扩建项目)			现有工程排污許可管理类据(改、扩 建项目)			项目申请类别		新中央日				
		现有 1 程排行许可证或排约登记来编号				国民经济行业类型发代码		C2110本就家具制造						
		建設性数 平規制衛門修行业类別 「十八、東共制品业21—36、未項家共制造21」						國計投产時间 2923年12月						
		報封建設開新 (月) 建设性類						计划开口时	2022年10月					
		建设地点 相云共新进(1-Mg-40-2地块(增云县新建(1)地/(1)						建规规模	年产6000 值智能定制家居					
		200							(扩) 建项目、项目建成后、将形成年产6000非智能定则家部的生产能力。					
		环评信用学台编号			July-31 (\$12-01-02-290379	建设内容		「综合楼」地块总用的	他间书23114.7m2。总	建筑斯积49456 67m2.	和于逐渐建厂出出业			
ATE	1	原目代码		新江東京智能東洋市県公司年产600世世紀史制庫原生产機項目 2003-371/22-47-62-296379						本项目位于借云县新进01-342-01-2地块(借云县新进城互川村),报新建14广房。24				
	-	項目名称		(1) (1) (1) (2) (2) (2)	■ 100 14 80 ソンボロード の場合は 10 10 10 10 10 10 10 10 10 10 10 10 10	277284818		the state of the s	1000			1 T T T T T T T T T T T T T T T T T T T	- A - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	

		2	水投資	100	34.8	Va .	1									
1000		3	水性別	Mary as a second	6.72	Ve Ve	+									
		4	油性資産		8.5	t/a							100			
		3	維性局		8.7	Va .	+									
		- 6	油性期	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	3.8	Uz	_			_						
		7	海性植		6.6	Va Va										
		***************************************	The second second	The second second		污染防治设施工艺			divide SE Me							
1 80		序号(報号)	排放口名称	#*(NEG (#)	排句 (编号)	84	污染防迫设施处 程效率	押号 (编号)	生产设施	対勢物种类 乙酸能类、非甲烷	排除地位	污染物结放 排放逐率 (千克)小时)	排放盤 (地)年)	ID IX 46 XII 45 46		
A		1	油性油喷涂皮气性放口	15m	DAINI	活性发吸用+活性实验附催化燃烧			1000		(量度/立方來)				250 15	
		2	水性漆噴蓬1排放口	97.67	7000350	The desired and the second sec	90			.Q.15				(工业金装工序 总标准) (DB33		
		3	水性油噴涂2排放口	15m	DA002	水帘机	70			10				《工业涂集工序		
		1	報途、海涂然气排放口	15m	DA001	水市机	70			12				4工业业装工件:	大气污染物	
				15m	DA004	水噴淋塔	70			非甲烷总统				(工业市场工作:		
		5	減性透明維度气体放口	25m	DA005	活世聚聚聚+活性紫脱阳催化燃烧	90			乙酸酯类、非甲烷				旅标准2 (DB3)	3/2146-2018	
	有组织推动 (主要指动	VI	水性藻噴涂1/排放口	15m	DA006	水溶机	70							11 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	(II)		本性綠嘴涂2排放口	15m	DA007	水溶机	70			\$2 \$2			_	《工业除放工序大气污染的 放标准》(DB33/2146-20)		
		3	報途、淋涂皮气移放口	15m	DA008	水喷沸塔	70			非甲烷总 奶				(大气污染物综合排放标准)		
West and the		9	木工1度气体放口	15m	DA009	中央布装除主器	90			THE PORT				(大气污染物综合排放标准)		
人气污染(f)		10	本工2版气铸值印	1.5m	DA010	中央布装除主器	90			新校物				-		
理与排政信息		11	本工1度气排放口	15m	DA011	中央布袋除尘器	90			原数物				(大气污染物综合排放标准) GB)6297-1996		
-	1-1-1	12	水江2度气排放口	15m	DAULZ	中央存圾除尘器	90			研究的				污染物综合排放		
		13	做灰。有磨1旋气蜂放口	15m	DA013	水液式除尘相	80			B0.83.00				(工业排装工作)		
		14	批灰。行路200气待放口	15m	DA614	布施除北部	.90			III 82 Pb				《工业录集工序		
	1	15	批灰。打磨1坡气排放口	15m	DA915	水池式除尘柜	80			期段物				《工业涂装工序》	and the last of th	
		16	极表。打磨2度气停放口	15m	DA016	布装除尘器	90			10(82 Pg				《工业津集工序》	entidential side from the common or the state	
	1000	(99 (89)		3740	訓練放散名称					19304	145.90		and the same of	1.42-404-4017	> HYREN	
		William St.		Aire	CONTRACTOR STATE		191	设物种类	排放收度 (毫克/文方米)		100.000	10.0	数标准名称			
		1											NUMBER OF STREET			
	无机系统数	-														
		2														
	1025											Y.				
		3														
				A STATE		按照数	の設備でき					318 B.W.				
	6	押号 (編号)	排放口名称	俊水:	ρW	The second secon	市政権工艺	阿袋奶的设施处理水	传数公司			污染物指放 排除效应	18.06.00	T.		
	车间或生产	序号 (編号)	排放口名称	技术 :	Z) W	行功能 序号(編号)	5市政施工艺 名称	阿黎勒的被維处理水 量(吨/小时)	排放公司	石泉物	种类	排放改度	排放组 (例/年)	1\$ IK 45 /B	166	
	年同成化产 设施排放口	B1828000	排放口水棒	皮水:	Д W	The second secon	CONTRACTOR OF THE PARTY OF THE		排放公府	拉袋物	H-3.		排放催 (地/年)	转换标准	188	
		B1828000	排放口包件	废水:	卖饭	The second secon	CONTRACTOR OF THE PARTY OF THE		排放力段	拉勒物	市 表	排放改度		10 100 80 70	188	
		B1828000	推放日本株	使水	ДW	The second secon	CONTRACTOR OF THE PARTY OF THE		排放力段	打散物	种类	排放改度		It like his All	188	
		B1828000	推放日本株	旋水	AW .	The second secon	1.81	量(吨/小时)	排放公府	石築物	中央	排放改復 (後克/升)		持股标准	188	
	设施排放口	B1225000	排放口名称 排放口名称	使水: 内集的 (1)		The second secon	名称	量(吨小封)	受纳内水处理厂排放标准名	打柴物	种类	棒放放度 (模定/升) 污染物排放	(904)	持股标准	188	
与排散信息	税施排放口 品排放口					序号 (報号)	1.81	量(吨/小时)		打集物		排放故搜 (是或升) 污染物排放 排散疾疫	(地等)	19 (K 4s /K		
水污染血程 与排胀信息数 (主要)	設施排放口 品排放口 (何時待					序号 (報号)	名称	量(吨小封)	受纳内水处理厂排放标准名			棒放放度 (模定/升) 污染物排放	(904)			
与排放信息 (主要排放	税施排放口 品排放口					序号 (報号)	名称	量(吨小封)	受纳内水处理厂排放标准名			排放故搜 (是或升) 污染物排放 排散疾疫	(地等)			
与排放信息 (主要排放	設施排放口 品排放口 (何時待					序号 (報号)	名称	量(吨小利) 水处利/ 编句	受纳内水处理厂排放标准名			排放故搜 (是或升) 污染物排放 排散疾疫	(地等)			
与排脱信息 (主要排放	設施持数13 品排放13 (何能待 放)	序号(编号)	排除口名称	गुडिक तर	QM TZ	序号(編号) 污染的治收施处理水值(M/小时)	名称	量(吨小封)	受纳内水处理厂排放标准名			棒做故復 (暴克/升) 污染物排值 棒般吸度 (毫克/升)	(地)年) 			
与排放信息 (主要排放	設施持数13 品特度3 (何施持 度)				QM TZ	序号 (報号)	名称	量(吨小利) 水处利) 塩勺 受耐水体	受纳内水处理厂排放标准名	刊事物	种 更	排放放復 (是或/升) 污染物排放 排散疾改 (毫克/升)	(地)(年) 	1847	15#	
与排脱信息 (主要排放	設施持数13 总持放13 (何接持 故)	序号 (编号)	排除口名称	गुडिक तर	QM TZ	序号(編号) 污染的治收施处理水值(M/小时)	名称 受給/ 名称	量(吨小利) 水处利) 塩勺 受耐水体	受協污水处理」 非故秘准名	門事物	种类	排放故復 (是或月) 污染物排放 排散成改 (毫克/升) 污染物排放 作成原改 (毫克/升)	(地)年) 非故意 (地)年) 神歌星 (地)年)	# 8 # 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2	1 名音	
与排版信息 〈主要排放	設施持数13 品特度3 (何施持 度)	序号(编号)	排除口名称	गुडिक तर	QMTZ QMTZ	序号(編号) 污染的治收施处理水值(M/小时)	名称 受給/ 名称	量(吨小利) 水处利) 塩勺 受耐水体	受協污水处理」 非故秘准名	PS Section Code	种类	排放放復 (是或/升) 污染物排放 排散疾改 (毫克/升)	(地)年) 非故意 (地)年) 神歌星 (地)年)	体 农 种 邓	1.名称 一名称 一主要水污染	
与排版信息 〈主要排放	设施排放口 (和 (和)	序号 (编号) 序号 (编号)	排放口名称 排放口名称 「水总排口	四級級者 阿黎納斯· 化类体系油化	交集工艺 交集工艺 75本处理法	序号(編号) 污染的治核集处理水值(吨/小时) 污染的治设集处理水值(吨/小时)	名称 受助/ 名称 名称	量(略小例) (水处理) (成例) (交前水体)	受納河水处理」 排放标准名 籍	COE S/S	种类	排放放復 (是或/升) 污染物排放 排散改改 (毫克/升) 污染物排液 (毫克/升) 30.000	(明年) 等政策 (明年)	# 8 # 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2	名称 名称 工资水污染 DB 33/2169-	
与排版信息 (主要排放	設施持数13 总持放13 (何接持 故)	序号 (编号) DW901 序号	排放口名称 排放口名称 / × 总排口 名称	内 斯 ·斯 在 1	交集工艺 交集工艺 75本处理法	序号(編号) 污染阳岩设施处理水径(M/小时) 污染阳岩设施处理水径(M/小时)	名称 受納/ 名称 名称	量(吨小利) (水处用) (成例) (水处用) (成例)	受病污水处理」 排放标准名 構 機类制 能子供施名群	PS Section Code	种类	排放放復 (是或/升) 污染物排放 排散疾改 (毫克/升) 污染物排液 便放床改 (毫克/升)	等政策 (例明) (例明)	排放体程 (被傾污水处理/ 物排放标准) (L 2018) 和《致统污	名称 名称 工资水污染 DB 33/2169-	
与排版信息 (主要排放	设施排放口 总排放口 (何度) (何度) (何度) (成) 及物类型	序号 (编号) P号 (编号) DW001 序号	/	四級級者 阿黎納斯· 化类体系油化	交集工艺 交集工艺 75本处理法	序号(編号) 污染的治核集处理水值(吨/小时) 污染的治设集处理水值(吨/小时)	名称 受給 名称 名称 名称 名称	量(吨/+例) (成例) (成例) (成例) (成例) (成例)) (成例)	受納污水处理」 特故标准名	COE S/S	种类	排放放復 (是或/升) 污染物排放 排散改改 (毫克/升) 污染物排液 (毫克/升) 30.000	(明)年) 非政府 (何)年) 体政組 (例)年) 0.527	排放体程 (被傾污水处理/ 物排放标准) (L 2018) 和《致统污	名称 主要水污染 DB 33/2169- 号水处理厂约	
与排版信息 (主要排放	设施排放口	序号 (编号) DW001 序号 1 1	排放口名称 排放口名称 / 汉总排口 / 文总排口 / 文总排口 / 文总排口 / 文格 / 次总排工 / 次总机	四級級者 阿黎納斯· 化类体系油化	交集工艺 交集工艺 75本处理法	序号(編号) 污染的治核集处理水值(吨/小时) 污染的治设集处理水值(吨/小时)	名称 受納/ 名称 名称	登(吨/封) (成年) (成年) (本注意(成年) (21.32 1.4	受病疗水处理 指故标准名 格 一般過度 一般過度河 一般過度河	COE S/S	种类	排放放復 (是或/升) 污染物排放 排散改改 (毫克/升) 污染物排液 (毫克/升) 30.000	(明)年) 非政府 (何)年) 体政組 (例)年) 0.527	排放体程 (被傾污水处理/ 物排放标准) (L 2018) 和《致统污	名称 名称 DB 33/2169- 可水处理厂的 是有效运	
与排版信息 (主要排放	设施排放口 总排放口 (何度) (何度) (何度) (成) 及物类型	序号 (编号) P号 (编号) DW001 序号	排練口名牌 排練口名牌 / × 总排口 名牌 放地料 · 本面寄生 液砂板 质试验材料	四級級者 阿黎納斯· 化类体系油化	交集工艺 交集工艺 75本处理法	序号(編号) 污染的治核集处理水值(吨/小时) 污染的治设集处理水值(吨/小时)	名称 型動	登(吨/耐) (域) (域) (域) (域) (域) (域) (域) (域) (域) (域)	受病污水处理」 指做标准名 · 格	COE S/S	种类	排放放復 (是或/升) 污染物排放 排散改改 (毫克/升) 污染物排液 (毫克/升) 30.000	(明)年) 非政府 (何)年) 体政組 (例)年) 0.527	排放体程 (被傾污水处理/ 物排放标准) (L 2018) 和《致统污	(名称 厂主要水污染 DB 33/2169- 污水处理厂污 是資外站 是 是	
与传染信息 (主要传统 (2)	设施排放口	序号 (编号) P号 (编号) DW001 P号 1 3	/	四級級者 阿黎納斯· 化类体系油化	交集工艺 交集工艺 75本处理法	序号(編号) 污染的治核集处理水值(吨/小时) 污染的治设集处理水值(吨/小时)	名称 受給/ 名称 名称 / / /	登(吨小利) (域句) (域句) ((域内)) (121) 2 (14) (0)	受病污水处理」 排放标准系 整 整 整 一般因变词 一般因变词 一般因类词 一般因类词 一般因类词	COE S/S	种类	排放放復 (是或/升) 污染物排放 排散來改 (施克/升) /污染物排液 (施克/升) 30.00 1.000	(地)年) 非故意 (他)年) 	体液体度 《被编污水处理》 物排放标准》(L 2018)和《被编污 医工艺	名称 主要本方達 DB 33/2169- 寸水处理/ 的 最對於電 是 是 是 是 是	
亨権股係息 (主要権赦 □)	设施排放口	序号 (编号) P号 (编号) DW001 P号 1 2 3 4	/	四級級者 阿黎納斯· 化类体系油化	交集工艺 交集工艺 75本处理法	序号(編号) 污染的治核集处理水值(吨/小时) 污染的治设集处理水值(吨/小时)	名称	登(吨/+射) (吨/+射) (域) (域) (2) 32 1.4 1 (2) 43 425	受納河水处理」 排資标准名 維	COE S/S	种类	排放放復 (是或/升) 污染物排放 排散改改 (毫克/升) 污染物排液 (毫克/升) 30.000	(明)年) 非政府 (何)年) 体政組 (例)年) 0.527	体液体度 《被编污水处理》 物排放标准》(L 2018)和《被编污 医工艺	各種 「主要水污染 DB 33/2169 - 5水处理」「 是資外省 是 是 是 是	
対体機物 値 (1)	设施排放口	#号 (編号) P号 (編号) DW901 非号 1 2 3 4	/	四級級者 阿黎納斯· 化类体系油化	交集工艺 交集工艺 75本处理法	序号(編号) 污染的治核集处理水值(吨/小时) 污染的治设集处理水值(吨/小时)	名称	登 (吨/小村) (本处村) (成村) (成村) (成村) (成村) (成村) (成村) (成村) (成	受納污水处理」 存收标准名	COE S/S	种类	排放放復 (是或/升) 污染物排放 排散來改 (施克/升) /污染物排液 (施克/升) 30.00 1.000	(地)年) 非故意 (他)年) 	体液体度 《被编污水处理》 物排放标准》(L 2018)和《被编污 医工艺	名称 主要水内車 主要水内車 DB 33/2169- 寸水处理」 起 起 起 見 見 見 見 見 見 見 見 見 見	
与技能信息 (主要特效 (1)	设施排放口 总排放口 总排放口 (何故) 及排放工 (在故) 及物类型 (在故)	#号(編号) DW901 #号 1 2 3 4 5 6	排除口名棒 排液口名棒 / 双总棒口 名棒 放鬼科、未质粉生 成砂纸 成弦蜗杆科 成存装 成选	四級級者 阿黎納斯· 化类体系油化	交集工艺 交集工艺 75本处理法	序号(編号) 污染的治核集处理水值(吨/小时) 污染的治设集处理水值(吨/小时)	名称	登(吨/金) (吨/金) () () () () () () () (受病污水处理 指故标准名 格 一般過度河 一般可 是度河 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般 一 一 一 一 一 一 一 一 一 一 一 一 一	COE S/S	种类	排放放復 (是或/升) 污染物排放 排散來改 (施克/升) /污染物排液 (施克/升) 30.00 1.000	(地)年) 非故意 (他)年) 	体液体度 《被编污水处理》 物排放标准》(L 2018)和《被编污 医工艺	(名称 下主要水污染 DB 33/2169- 可水处理厂污 是有效验 是 是 是 是 是 是 是 是 是 是 是 是 是	
与排放信息 (主要排放 口)	设施排放口	#号(編号) #号(編号) DW801 #号 1 2 3 4 5 6 7	排放口名称 排放口名称 / 汉总排口 起称 / 汉总排口 起称 / 成功科、末级而生 成功的 成让银村科 成在装 疾统 依证银相 收有表	四級級者 阿黎納斯· 化类体系油化	交集工艺 交集工艺 75本处理法	序号(編号) 污染的治核集处理水值(吨/小时) 污染的治设集处理水值(吨/小时)	影響	登 (吨/+射) (吨/+射) (吨/+射) (1	受病污水处理 排放标准名 格 体 学存收施名称 一般混变河 是混发河 是混发河 是混发河 是混发河 是混发河 是混发河 是混发河 是混发河 是成为 是混发河 是成为 是成为 是成为 是成为 是成为 是成为 是成为 是成为	COE S/S	种类	排放放復 (學或/升) 污染物排放 排散來改 (施克/升) /污染物排液 (施克/升) 30.00 1.000	(地)年) 非故意 (他)年) 	体液体度 《被编污水处理》 物排放标准》(L 2018)和《被编污 医工艺	名標 主要水污染 DB 33/2169- 分水处理 	
与排放信息 (主要排放 口)	设施排放口 总排放口 总排放口 (何故) 及排放工 (在故) 及物类型 (在故)	#号(編号)	排除口名棒 排液口名棒 / 双总棒口 名棒 放鬼科、未质粉生 成砂纸 成弦蜗杆科 成存装 成选	四級級者 阿黎納斯· 化类体系油化	交集工艺 交集工艺 75本处理法	序号(編号) 污染的治核集处理水值(吨/小时) 污染的治设集处理水值(吨/小时)	名称	登(吨/金) (吨/金) () () () () () () () (受病污水处理 指故标准名 格 一般過度河 一般可 是度河 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般可 上面 一般 一 一 一 一 一 一 一 一 一 一 一 一 一	COE S/S	种类	排放放復 (學或/升) 污染物排放 排散來改 (施克/升) /污染物排液 (施克/升) 30.00 1.000	(地)年) 非故意 (他)年) 	体液体度 《被编污水处理》 物排放标准》(L 2018)和《被编污 医工艺	(名称 下主要水污染 DB 33/2169- 可水处理厂污 是有效验 是 是 是 是 是 是 是 是 是 是 是 是 是	